Skip to main content
Log in

Electric and Magnetic Evaluation of Aluminum–Magnesium Nanoalloy Decorated with Germanium Through Heterocyclic Carbenes Adsorption: A Density Functional Theory Study

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Heterocyclic compounds with multiple bonds and heteroatoms of nitrogen, oxygen and sulfur can be notable as corrosion inhibitors for metal surfaces. In this work, Ge-doped Al–Mg nanoalloy has been investigated based on Langmuir adsorption and density functional theorey method (DFT) method. The partial electron density states (PDOS) have confirmed an obvious charge accumulation between the Al–Mg alloy and doped atom of Ge through the recognition of the conduction band region. The infrared (IR) spectrums for complexes of inhibitors adorbed on Ge-doped Al–Mg alloy have been reported in the frequency between 500–3500 cm–1 for (benzotriazole/2-mercaptobenzothiazole/8-hydroxyquinoline) → Al–Mg–Ge, and around 500–4000 cm–1 for 3-amino-1,2,4-triazole-5-thiol → Al–Mg–Ge with the sharpest peak approximately around 2000 cm–1, 3000 cm–1 for (benzotriazole/2-mercaptobenzothiazole/8-hydroxyquinoline) → Al–Mg–Ge and 2000 cm–1, and 4000 cm–1 for 3-amino-1,2,4-triazole-5-thiol → Al–Mg–Ge. Nuclear magnetic reonance (NMR) spectrocopy has focused on the intra-atomic and interatomic interactions with ONIOM model with three levels of high, medium and low by using LANL2DZ/6-31+G(d, p), semi-empirical and MM2 functions. Al–Ge(14), Al–Ge(19) and Al–Ge(21) in the Al–Mg–Ge alloy surface with the highest fluctuation in the shielding tensors of NMR spectrums generated by intra-atomic interaction direct us to the most influence in the neighbor atoms generated by interatomic reactions of N → Al, O → Al, S → Al through the coating and adsorbing process of Langmuir adsorption. This work indicated that proper monitoring of the coating mechanism by Langmuir adsorption can illustrate inhibiting the ternary aluminum nanoalloy of Al–Mg–Ge corrosion through an investigation of their structural and physicochemical analysis. Furthermore, it has been illusstrated the effect of the substitution of aluminum atoms in Al–Al nanosheet with Mg and Ge through resulted electric potential by using Nuclear quadrupole resonance (NQR) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. E. Machnikova, K. H. Whitmire, N. Hackerman, et al., Electrochim. Acta 53, 6024 (2008). https://doi.org/10.1016/j.electacta.2008.03.021

    Article  CAS  Google Scholar 

  2. M. Benabdellah, R. Touzani, A. Aouniti, et al., Mater. Chem. Phys. 105, 373 (2007). https://doi.org/10.1016/j.matchemphys.2007.05.001

    Article  CAS  Google Scholar 

  3. A. Fiala, A. Chibani, A. Darchen, et al., Appl. Surf. Sci. 253, 9347 (2007). https://doi.org/10.1016/j.apsusc.2007.05.066

    Article  CAS  Google Scholar 

  4. A. Tahan, F. Mollaamin, and M. Monajjemi, Russ. J. Phys. Chem. A83, 587 (2009). https://doi.org/10.1134/S003602440904013X

    Article  CAS  Google Scholar 

  5. M. Liu, C. D. Marioara, R. Holmestad, et al., Mater. Sci. Forum 794–796, 971 (2014). doi 10.4028/www.scientific.net/MSF.794-796.971

  6. P. R. Vasyutin, E. A. Lagunova, M. Y. Sinev, et al., Russ. J. Phys. Chem. B 16, 1231 (2022). https://doi.org/10.1134/S1990793122070168

    Article  CAS  Google Scholar 

  7. P. R. Vasyutin, Y. A. Gordienko, M. Y. Sinev, et al., Russ. J. Phys. Chem. B 16, 1259 (2022), https://doi.org/10.1134/S199079312207017X

    Article  CAS  Google Scholar 

  8. N. A. Kochetov, Russ. J. Phys. Chem. B 16, 621 (2022). https://doi.org/10.1134/S1990793122040078

    Article  CAS  Google Scholar 

  9. K. Xu, Y. Cui, Y. Yu, et al., Russ. J. Phys. Chem. B 16, 787 (2022). https://doi.org/10.1134/S1990793122040054

    Article  CAS  Google Scholar 

  10. A. V. Dubovik, Russ. J. Phys. Chem. B 15, 696 (2021). https://doi.org/10.1134/S1990793121040151

    Article  CAS  Google Scholar 

  11. A. A. Voznyakovsky, A. P. Wozniakovsky, S. V. Kidalov, et al., Russ. J. Phys. Chem. B 15, 377 (2021). https://doi.org/10.1134/S1990793121030325

    Article  CAS  Google Scholar 

  12. F. Lasagni, A. Lasagni, E. Marks, et al., Acta Mater. 55, 3875 (2007). https://doi.org/10.1016/j.actamat.2007.03.004

    Article  CAS  Google Scholar 

  13. G. Requena, G. Garcés, M. Rodríguez, et al., Adv. Eng. Mater. 11, 1007 (2009). https://doi.org/10.1002/adem.200900218

    Article  CAS  Google Scholar 

  14. Z. Asghar, G. Requena, and F. Kubel, Mater. Sci. Eng. A 527, 5691 (2010). https://doi.org/10.1016/j.msea.2010.05.033

    Article  CAS  Google Scholar 

  15. F. Stadler, H. Antrekowitsch, W. Fragner, et al., Int. J. Cast. Metals Res. 25, 215 (2012). https://doi.org/10.1179/1743133612Y.0000000004

    Article  CAS  Google Scholar 

  16. Y. Boughoues, M. Benamira, L. Messaadia, et al., Eng. Asp. 593, 124610 (2020). https://doi.org/10.1016/j.colsurfa.2020.124610

    Article  CAS  Google Scholar 

  17. M. Özcan, R.Solmaz, G. Kardaş, et al., Eng. Asp. 325, 57 (2008). doi 10. 1016/j.colsurfa.2008.04.031

  18. J. Saranya, M. Sowmiya, P. Sounthari, et al., J. Mol. Liq. 216, 42 (2016). https://doi.org/10.1016/j.molliq.2015.12.096

    Article  CAS  Google Scholar 

  19. T. A. S. Guimarães, J. N. da Cunha, G. A. de Oliveira, et al., J. Mater. Res. Technol. 9, 7104 (2020). https://doi.org/10.1016/j.jmrt.2020.05.019

    Article  CAS  Google Scholar 

  20. M. Ozcan, Acta Phys.-Chim. Sin. 24, 1387 (2008). https://doi.org/10.1016/S1872-1508(08)60059-5

    Article  CAS  Google Scholar 

  21. M. Mobin and R. Aslam R. Process Saf. Environ. Prot. 114, 279 (2018). https://doi.org/10.1016/j.psep.2018.01.001

    Article  CAS  Google Scholar 

  22. M. Monajjemi, M. Khaleghian, N. Tadayonpour, et al., Int. J. Nanosci. 09, 517 (2010). https://doi.org/10.1142/S0219581X10007071

    Article  CAS  Google Scholar 

  23. S. A. Ali, M. A. J. Mazumder, M. K. Nazal, et al., Arab. J. Chem. 13, 242 (2020). https://doi.org/10.1016/j.arabjc.2017.04.005

    Article  CAS  Google Scholar 

  24. M. Monajjemi, M. T. Baie, and F. Mollaamin, Russ. Chem. Bull. 59, 886 (2010). https://doi.org/10.1007/s11172-010-0181-5

    Article  CAS  Google Scholar 

  25. E.-S. M. Sherif, H. S. Abdo, K. A. Khalil, et al., Metals 5, 1799 (2015). https://doi.org/10.3390/met5041799

    Article  Google Scholar 

  26. E. S. Sherif, Molecules 19, 9962 (2014). https://doi.org/10.3390/molecules19079962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D. Yang, M. Zhang, J. Zheng, et al., RSC Adv. 5, 95160 (2015). https://doi.org/10.1039/C5RA14556B

    Article  CAS  Google Scholar 

  28. M. Finšgar and I. Milošev, Corros. Sci. 52, 2737 (2010). https://doi.org/10.1016/j.corsci.2010.05.002

    Article  CAS  Google Scholar 

  29. A. Y. Shen, S. N. Wu, and C. T. Chiu, J. Pharm. Pharmacol. 51, 543 (1999).https://doi.org/10.1211/0022357991772826

    Article  CAS  PubMed  Google Scholar 

  30. P. A. J. Cabassi, B. K. Loveday, Ph. Radcliffe, et al., J. South African Inst. Mining Metall. 83, 270 (1983).

    CAS  Google Scholar 

  31. M. Monajjemi, F. Mollaamin, M. R. Gholami, et al., Main Group Met. Chem. 26, 349 (2003). https://doi.org/10.1515/MGMC.2003.26.6.349

    Article  CAS  Google Scholar 

  32. F. Mollaamin, S. Shahriari, M. Monajjemi, et al., J. Clust. Sci. 34, 1547 (2023). https://doi.org/10.1007/s10876-022-02335-1

  33. F. Mollaamin and M. Monajjemi, Mol. Simul. 49, 365 (2023). https://doi.org/10.1080/08927022.2022.2159996

    Article  CAS  Google Scholar 

  34. M. E. Mashuga, L. O. Olasunkanmi, and E. E. Ebenso, J. Mol. Struct. 1136, 127 (2017). https://doi.org/10.1016/j.molstruc.2017.02.002

    Article  CAS  Google Scholar 

  35. Y. Jing, J. Zhang, W. Hu, et al., Russ. J. Phys. Chem. B 15, S102 (2021). https://doi.org/10.1134/S1990793121090165

    Article  Google Scholar 

  36. M. Svensson, S. Humbel R. D. J. Froese, et al., J. Phys. Chem. 100, 19357 (1996). https://doi.org/10.1021/jp962071j

    Article  CAS  Google Scholar 

  37. F. Brandt and C. R. Jacob, Systematic 18, 2584 (2022). https://doi.org/10.1021/acs.jctc.1c01093

    Article  CAS  Google Scholar 

  38. R. Dennington, T. A. Keith, and J. M. Millam, GaussView, Version 6 (Semichem Inc., Shawnee Mission, KS, 2016).

    Google Scholar 

  39. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, et al., Gaussian 16, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2016).

    Google Scholar 

  40. Z. Wu, L. Zhang, and Y. Liao, Russ. J. Phys. Chem. B 15, S81 (2021). https://doi.org/10.1134/S1990793121090153

    Article  Google Scholar 

  41. O. N. Fedyaeva and A. A. Vostrikov, Russ. J. Phys. Chem. B 16, 1409 (2022). https://doi.org/10.1134/S1990793122080140

    Article  CAS  Google Scholar 

  42. M. Monajjemi, M. Khaleghian, N. Tadayonpour, et al., Int. J. Nanosci. 9, 517 (2010). https://doi.org/10.1142/S0219581X10007071

  43. K. Bakhshi, F. Mollaamin, and M. Monajjemi, J. Comput. Theor. Nanosci. 8, 763 (2011). https://doi.org/10.1166/jctn.2011.1750

    Article  CAS  Google Scholar 

  44. T. Ravi and S. Sundararaman, Russ. J. Phys. Chem. B 15, 462 (2021). https://doi.org/10.1134/S1990793121030295

    Article  CAS  Google Scholar 

  45. F. Mollaamin, M. Monajjemi, S. Salemi, et al., Fuller. Nanotub. Carbon Nanostruct. 19, 182 (2011). https://doi.org/10.1080/15363831003782932

    Article  CAS  Google Scholar 

  46. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  47. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  48. K. Kim and K. D. Jordan, J. Phys. Chem. 98, 10089 (1994). https://doi.org/10.1021/j100091a024

    Article  CAS  Google Scholar 

  49. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, et al., J. Phys. Chem. 98, 11623 (1994); https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  50. C. J. Cramer, Essentials of Computational Chemistry: Theories and Models, 2nd ed. (John Wiley and Sons, New York, 2004).

    Google Scholar 

  51. S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980). https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  52. A. D. Becke, Phys. Rev. A 38, 3098 (1988). https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  53. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971). https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  54. R. A. Fry, K. D. Kwon, S. Komarneni, et al., Langmuir 22, 9281 (2006). https://doi.org/10.1021/la061561s

    Article  CAS  PubMed  Google Scholar 

  55. M. Finnis, Prog. Mater. Sci. 52, 133 (2007). https://doi.org/10.1016/j.pmatsci.2006.10.003

    Article  CAS  Google Scholar 

  56. J. A. S. Smith, J. Chem. Educ. 48, 39 (1971). https://doi.org/10.1021/ed048p39

    Article  CAS  Google Scholar 

  57. A. N. Garroway, J. B. Miller, and M. L. Buess, “Explosives detection by pure 14N NQR,” in Proceedings of the 1st International Symposium on Explosive Detection Technology, Atlantic City, USA (November 13–15, 1991).

  58. O. Kh. Poleshchuck, E. L. Kalinna, and J. N. Latosinska, J. Koput, J. Mol. Struct. 547, 233 (2001).

    Article  Google Scholar 

  59. H. A. Young, R. D. Freedman, Sears and Zemansky’s University Physics with Modern Physics, 13th ed. (Addison-Wesley, Boston, 2012), p. 754.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

In successfully completing this paper and its research, the authors are grateful to Kastamonu University for their support through the library, the laboratory, and scientific websites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mollaamin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollaamin, F., Monajjemi, M. Electric and Magnetic Evaluation of Aluminum–Magnesium Nanoalloy Decorated with Germanium Through Heterocyclic Carbenes Adsorption: A Density Functional Theory Study. Russ. J. Phys. Chem. B 17, 658–672 (2023). https://doi.org/10.1134/S1990793123030223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030223

Keywords:

Navigation