Skip to main content
Log in

DNA Condensation in Bacteria

  • ON THE 100th ANNIVERSARY OF THE BIRTH OF ACADEMICIAN V.I. GOLDANSKY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Deoxyribonucleic acid (DNA) is organized hierarchically in the nucleoid of an actively growing cell, with three levels of DNA compaction. The lower level (small scale ≥1 kb base pairs (bps)) is provided by the interaction with DNA-bound proteins. Actively growing cells maintain a dynamic, far from equilibrium order through metabolism. When cells enter a dormant state (almost complete absence of metabolism), the usual biochemical methods of protecting DNA cease to work, and the cells, adapting to the new conditions, are forced to use the physical mechanisms of DNA protection. The structure of DNA in the nucleoid of dormant cells formed during starvation stress is studied using synchrotron radiation diffraction and transmission electron microscopy (TEM). The experimental results make it possible to visualize the structures of the lower hierarchical level of DNA compaction in the nucleoid of dormant cells. A series of diffraction experiments conducted for the first time indicate the presence of a periodic ordered organization of DNA in all the studied bacteria. The TEM method made it possible to extract fine visual information about the type of DNA condensation in the nucleoid of the bacterium Escherichia coli (E. coli). Intracellular nanocrystalline, as well as liquid-crystalline and folded nucleosome-like, structures of DNA are found. The folded nucleosome-like structure was observed for the first time and is the result of the multiple folding of long DNA molecules around the DNA-binding protein (Dps) of starved cells and its associates. The different types of condensed state of DNA found by us in the studied dormant E. coli cells (DNA condensation heterogeneity) provide additional arguments in favor of the concept that considers a microbial population as a multicellular organism. The study of changes in the DNA architecture under the effect of the chemical analog of the autoinducer of anabiosis 4-hexylresorcinol (4-HR) is studied. An increase in the 4-HR concentration induces the transition of a part of the cells of the population to anabiotic dormant state, and then to a mummified state. The studies of the structure of DNA in the anabiotic and mummified states show the spectroscopic identity of the DNA structure in the dormant anabiotic state and in the dormant state formed during starvation stress. Studies of the structure of DNA in the mummified state show a strong difference from the structure of DNA in the anabiotic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. O. G. Stonington and D. E. Pettijohn, Proc. Natl. Acad. Sci. USA 68 (1), 6 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. C. Verma, Z. Qian, and S. L. Adhya, PLoS Genet. 15 (12) (2019).

  3. N. Trun and J. Marko, Am. Soc. Microbiol. News 64 (5), 276 (1998).

    Google Scholar 

  4. O. V. Bukharin, A. L. Gintsburg, Yu. M. Romanova, and G. I. El’-Registan, Survival Mechanisms of Bacteria (Meditsina, Moscow, 2005) [in Russian].

    Google Scholar 

  5. A. G. Tkachenko, Molecular Mechanisms of Stress Responses in Microorganisms (Uro RAN, Yekaterinburg, 2012) [in Russian].

    Google Scholar 

  6. A. Minsky, E. Shimoni, and D. Frenkiel-Krispin, Nat. Rev. Mol. Cell. Biol. 3, 50 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. A. Y. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (AIP, New York, 1994).

    Google Scholar 

  8. V. A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. C. Zimmer, Microcosm: E. Coli and the New Science of Life (Pantheon Books, New York, 2008).

    Google Scholar 

  10. Yu. F. Krupyanskii and V. I. Gol’danskii, Usp. Fiz. Nauk 172 (11), 1247 (2002).

    Article  Google Scholar 

  11. Yu. F. Krupyanskii, Russ. J. Phys. Chem. B 15, 326 (2021). https://doi.org/10.1134/S199079312102007X

  12. K. V. Shaitan, Khim. Fiz. 42 (6), 40 (2023).

  13. J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, Capturing Chromosome Conform. Sci. 295, 1306 (2002). https://doi.org/10.1126/science.1067799

    Article  CAS  Google Scholar 

  14. M. Simonis, P. Klous, E. Splinter, et al., Nat. Genet. 38, 1348 (2006). https://doi.org/10.1038/ng1896

    Article  CAS  PubMed  Google Scholar 

  15. J. Dostie, T. A. Richmond, R. A. Arnaout, et al., Genome Res. 16, 1299 (2006). https://doi.org/10.1101/gr.5571506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. P. G. D. Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979).

    Google Scholar 

  17. A. Y. Grosberg, S. K. Nechaev, and E. I. Shakhnovich, J. Phys. 49, 2095 (1988).

    Article  CAS  Google Scholar 

  18. E. Lieberman-Aiden, N. L. Van Berkum, L. Williams, et al., Science 326, 289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. L. A. Mirny, Chromosome Res. 19, 37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. E. G. Yashina and S. V. Grigor’ev, Zh. Eksp. Teor. Fiz. 156 (3), 540 (2019).

    Article  Google Scholar 

  21. M. H. Zwietering, I. Jongenburger, F. M. Rombouts, and K. van ‘t Riet, Appl. Environ. Microbiol. 56 (6), 1875 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. N. Loiko, Y. Danilova, A. Moiseenko, et al., PLoS One 15 (10) (2020). https://doi.org/10.1371/journal.pone.0231562

  23. E. Schrödinger, What Is Life? The Physical Aspect of the Living Cell (Cambridge Univ. Press, Cambridge, 1944).

    Google Scholar 

  24. A. Moiseenko, N. Loiko, O. S. Sokolova, and Y. F. Krupyanskii, Methods Mol. Biol. 2516, 143 (2022). https://doi.org/10.1007/978-1-0716-2413-5_9

    Article  CAS  PubMed  Google Scholar 

  25. D. O. Sinitsyn, N. G. Loiko, S. K. Gularyan, et al., Khim. Fiz. 36 (9), 59 (2017).

    Google Scholar 

  26. Yu. F. Krupyanskii, N. G. Loiko, D. O. Sinitsyn, et al., Kristallografiya 63 (4), 572 (2018).

    Google Scholar 

  27. Z. Reich, E. Wachtel, and A. Minsky, Science 264 (5164), 1460 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. D. Frenkiel-Krispin, I. Ben-Avraham, J. Englander, et al., Mol. Microbiol. 51, 395 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. V. Kovalenko, A. Popov, G. Santoni, et al., Acta Crystallogr. F76, 568 (2020).

    Article  CAS  Google Scholar 

  30. A. Moiseenko, N. Loiko, K. Tereshkina, et al., Biochem. Biophys. Res. Commun. 517 (3), 463 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. E. Tereshkin, K. Tereshkina, N. Loiko, et al., J. Biomol. Struct. Dyn. 37, 2600 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. E. V. Tereshkin, K. B. Tereshkina, V. V. Kovalenko, et al., Khim. Fiz. 38 (10), 48 (2019).

    Google Scholar 

  33. E. V. Tereshkin, K. B. Tereshkina, and Y. F. Krupyanskii, J. Physics: Conf. Ser. 2056 (1), 012016 (2021).

    Google Scholar 

  34. V. N. Blinov, V. L. Golo, and Y. Krupyanskii, Nanostuctures. Math. Phys. Model. 12, 5 (2015).

    Google Scholar 

  35. V. V. Vasilevskaya, A. R. Khokhlov, S. Kidoaki, and K. Yoshikawa, Biopolymers 41, 51 (1997).

    Article  CAS  Google Scholar 

  36. N. Loiko, Y. Danilova, A. Moiseenko, et al., bioRxiv, 011494 (2020). https://doi.org/10.1101/2020.03.27.011494

  37. J. A. Shapiro, Sci. Am. 258 (6), 82 (1988).

    Article  Google Scholar 

  38. J. A. Shapiro and M. Dworkin, Q. Rev. Biol 73 (3), 352 (1998).

    Article  Google Scholar 

  39. N. E. Suzina, A. L. Mulyukin, N. G. Loiko, et al., Mikrobiologiya 70 (5), 776 (2001).

    CAS  Google Scholar 

  40. A. Procopio, E. Malucelli, A. Pacureanu, et al., ACS Central Science 5, 1449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Santos, Y. Yang, M. Rosa, et al., Sci. Rep. 9, 17217 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. H. D. Ou, S. Phan, T. J. Deerinck, et al., Science 357 (6349), eaag0025 (2017). https://doi.org/10.1126/science.aag0025

Download references

ACKNOWLEDGMENTS

The authors thank the ESRF staff for the opportunity to conduct experiments. The analytical electron microscopy and biaxial tomography were performed at the User Center “Electron microscopy in life sciences,” Moscow State University. The calculations were carried out on a high-performance MVS-10P computer system at the Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

Funding

The authors thank the Russian Ministry of Science and Higher Education for financially supporting this study, which was carried out as part of a state task of the Russian Ministry of Education and Science (subject nos. 122040400089-6 and 122040800164-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Krupyanskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupyanskii, Y.F., Generalova, A.A., Kovalenko, V.V. et al. DNA Condensation in Bacteria. Russ. J. Phys. Chem. B 17, 517–532 (2023). https://doi.org/10.1134/S1990793123030211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030211

Keywords:

Navigation