Skip to main content
Log in

Temperature Dependence of the Nonlinear Dynamics of the Deactivation of Excited States of Tryptophan in Various Media

  • ON THE 100th ANNIVERSARY OF THE BIRTH OF ACADEMICIAN V.I. GOLDANSKY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The authors’ research on the dynamics of the excited states of tryptophan in various solvents as a function of temperature (–170 to +20°С) is presented. The antibatic behavior of the temperature dependences of the decay times of two components (fast and medium) of tryptophan fluorescence is found in the temperature range from –60 to +10°C. The third, slow, component shows a weak dependence on temperature. The antibatic behavior of the decay times of two components of the fluorescence kinetics is modeled under the assumption that, in a certain temperature range, some of the tryptophan molecules in the excited state pass from the short-wavelength rotamer B-form, which has a short fluorescence lifetime, to the long-wavelength rotamer R-form, with an intermediate fluorescence lifetime. To explain the observed changes in the spectra and duration of tryptophan fluorescence depending on temperature, a new model of the transitions between the excited and ground states using the charge transfer state (CTS), which takes into account the nonlinear nature of the dynamics of these transitions, is also developed. In these processes, an important role is played by the interaction of tryptophan molecules with its microenvironment and the rearrangements in the system of hydrogen bonds in the environment of the tryptophan molecule. Three main spectral regions of tryptophan fluorescence, which differ in the behavior of the temperature dependences of the rates of transition from the excited state of tryptophan to CTS, are distinguished. The key role of the dynamics of the hydrogen bond system, which determine the nonlinear nature of the change in tryptophan fluorescence parameters in the selected spectral regions, is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. H. Frauenfelder and B. McMahon, Proc. Natl. Acad. Sci. USA 95, 4795 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J. Fitter, R. E. Lechner, G. Buldt, and N. A. Dencher, Proc. Natl. Acad. Sci. USA 93, 7600 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. Frauenfelder, S. G. Sligar, and P. G. Wolynes, Science 254, 1598 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. T. A. Jackson, M. Lim, and P. A. Anfinrud, Chem. Phys. 180, 131 (1994).

    Article  CAS  Google Scholar 

  5. J. B. Johnson, D. C. Lamb, H. Frauenfelder, et al., Biophys. J. 71, 1563 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Paciarony, S. Cinelli, and G. Onori, Biophys. J. 83, 1157 (2002).

    Article  Google Scholar 

  7. G. Palazzo, A. Mallardi, A. Hochkoeppler, et al., Biophys. J. 82, 558 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. M. Kriegl, F. K. Forster, and G. U. Nienhaus, Biophys. J. 85, 1851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G. Mei, A. Di Venere, A. F. Agr’o, F. De Matteis, N. Rosato, J. Fluorescence 13, 467 (2003).

  10. M. Malferrari, A. Savitsky, M. D. Mamedov, et al., Biochim. Biophys. Acta 1857, 1440 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. D. E. Schlamadinger, J. E. Gable, and J. E. Kim, J. Phys. Chem. B 113, 14769.

  12. J. L. Dashnau, B. Zelent, and J. M. Vanderkooi, Biophys. Chem. 114, 71 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Chen and M. D. Barkley, Biochemistry 3, 9976 (1998).

    Article  Google Scholar 

  14. E. A. Burshtein, Mol. Biol. 17, 455 (1983).

    CAS  Google Scholar 

  15. P. P. Noks, B. N. Korvatovskii, P. M. Krasil’nikov, et al., Dokl. Akad. Nauk 467, 350 (2016).

    Google Scholar 

  16. V. I. Gol’danskii and V. V. Kuz’min, Usp. Fiz. Nauk 157, 3 (1989).

    Article  Google Scholar 

  17. A. G. Szabo and D. M. Rayner, J. Am. Chem. Soc. 102, 554 (1980).

    Article  CAS  Google Scholar 

  18. E. Gudgin, R. Lopez-Deigado, and W. R. Ware, Phys. Chem. 87, 1559 (1983).

    Article  CAS  Google Scholar 

  19. J. W. Petrich, M. C. Chang, D. B. McDonald, and G. R. Fleming, J. Am. Chem. Soc. 105, 3824 (1983).

    Article  CAS  Google Scholar 

  20. J. A. Ross and D. M. Jameson, Photochem. Photobiol. Sci. 7, 1301 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. M. Hellings, M. De Maeyer, and S. Verheyden, Biophys. J. 85, 1894 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. T. Liu, P. R. Callis, B. H. Hesp, and M. de Groot, J. Am. Chem. Soc. 127, 4104 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. C. -P. Pan, P. L. Muino, M. D. Barkley, and P. R. Callis, J. Phys. Chem. B 115, 3245 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. A. Kadyan, S. Juneja, and S. J. Pandey, Phys. Chem. B 123, 7578 (2019).

    Article  CAS  Google Scholar 

  25. P. P. Noks, E. P. Lukashev, B. N. Korvatovskii, et al., Biofizika 61, 1118 (2016).

    Google Scholar 

  26. C. Olsson, H. Jansson, and J. Swenson, J. Phys. Chem. B 120, 4723 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Physical Properties of Glycerine and Its Solutions (Glycerine Producers’ Association, New York, 1963).

  28. R. N. Havemeyer, J. Pharmaceutic. Sci. 55, 851 (1966).

    CAS  Google Scholar 

  29. J. J. Towey, A. K. Soper, and L. Dougan, J. Phys. Chem. 120, 4439 (2016).

    Article  CAS  Google Scholar 

  30. K. S. Krasnov, Physical Chemistry (Vyssh. shkola, Moscow, 2001), Vol. 1 [in Russian].

  31. P. D. Adams, Y. Chen, K. Ma, M.G. Zagorski, et al., JACS 124, 9278 (2002).

    Article  CAS  Google Scholar 

  32. B. J. Hayward, B. B. Henry, Chem. Phys. 12, 387 (1976).

    Article  CAS  Google Scholar 

  33. B. N. Tarasevich, IR Spectra of the Main Classes of Organic Compounds. Reference Materials (Khim. Fakul’tet Mos. Gos. Univ., Moscow, 2012) [in Russian].

    Google Scholar 

  34. V. V. Gorokhov, P. P. Noks, B. N. Korvatovskii, et al., Biokhimiya 82, 1615 (2017).

    Google Scholar 

  35. M. R. Hilairea, I. A. Ahmed, C.-W. Lina, et al., Proc. Natl. Acad. Sci. USA 114, 6005 (2017).

    Article  Google Scholar 

  36. P. R. Callis, J. Mol. Struct. 1077, 22 (2014).

    Article  CAS  Google Scholar 

  37. H. Liu, H. Zhang, and B. Jin, Spectrochim. Acta Part A, 106, 54 (2013).

    Article  CAS  Google Scholar 

  38. W. Doster and M. Settles, Biochim. Biophys. Acta 1749, 173 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. R. Blinc and B. Žekš, Soft Modes in Ferroelectrics and Antiferroelectrics (Elsevier, New York, 1974) [in Russian].

    Google Scholar 

  40. P. P. Knox, V. V. Gorokhov, B. N. Korvatovsky, et al., J. Photochem. Photobiol. A 393, 112435 (2020).

    Article  CAS  Google Scholar 

  41. P. P. Knox, E. P. Lukashev, V. V. Gorokhov, et al., J. Photochem. Photobiol. B 189, 145 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. V. V. Gorokhov, B. N. Korvatovskii, P. P. Noks, et al., Dokl. Ross. Akad. Nauk. Nauki Zhizni 498, 19 (2021).

    Google Scholar 

  43. V. Z. Pashchenko, V. V. Gorokhov, B. N. Korvatovskii, et al., Biofizika 66, 454 (2021).

    Google Scholar 

  44. K. L. Han and G. J. Zhao, Hydrogen Bonding and Transfer in the Excited State (John Wiley and Sons, Chichester, UK, 2011).

    Google Scholar 

  45. P. M. Krasilnikov, P. P. Knox, and A. B. Rubin, Photochem. Photobiol. Sci. 8, 181 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. A. B. Rubin, Biophysics (Vyssh. shkola, Moscow, 2013), Vol. 3 [in Russian].

Download references

Funding

This study was partially financed as part of state program no. 121032500058-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Z. Paschenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorokhov, V.V., Knox, P.P., Korvatovsky, B.N. et al. Temperature Dependence of the Nonlinear Dynamics of the Deactivation of Excited States of Tryptophan in Various Media. Russ. J. Phys. Chem. B 17, 571–583 (2023). https://doi.org/10.1134/S199079312303020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312303020X

Keywords:

Navigation