Skip to main content
Log in

Sensor Layers Based on Semiconductor Nanoparticles and Their Electronic Structure

  • ON THE 100th ANNIVERSARY OF THE BIRTH OF ACADEMICIAN V.I. GOLDANSKY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Studies on modeling the charge distribution in semiconductor nanoparticles are analyzed. The charge distribution largely depends on the type of nanoparticles and the concentration of conduction electrons. In the case of nanoparticles with a high content of electrons in the conduction band, the negatively charged layer plays an important role. The conductivity and sensor effect depend on this layer. It is shown that both the distribution of electrons and the sensor effect differ significantly in one- and two-component systems. The reasons for this difference are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

RЕFERENCES

  1. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).

    Article  CAS  Google Scholar 

  2. N. Yamazoe and K. Shimanoe, Sens. Actuators B 128, 566 (2008).

    Article  CAS  Google Scholar 

  3. G. N. Gerasimov, V. F. Gromov, O. J. Ilegbusi, and L. I. Trakhtenberg, Sens. Actuators B 240, 613 (2017).

    Article  CAS  Google Scholar 

  4. G. N. Gerasimov, V. F. Gromov, M. I. Ikim, and L. I. Trakhtenberg, Khim. Fiz. 40, 65 (2021).

    Google Scholar 

  5. P. Prathap, G. Gowri Devi, Y. P. V. Subbaiah, K. T. Ramakrishna Reddy, and V. Ganesan, Curr. Appl. Phys. 8, 120 (2008).

    Article  Google Scholar 

  6. L. C. Jimenez, H. A. Mendez, B. A. Paez, M. E. Ramirez, and H. Rodriguez, Brazilian J. Phys. 36, 1017 (2006).

    Article  Google Scholar 

  7. B. V. Lidskii, I. I. Oleynik, V. S. Posvyanskii, and L. I. Trakhtenberg, J. Phys. Chem. C 119, 16286 (2015).

    Article  Google Scholar 

  8. V. L. Bodneva, O. J. Ilegbusi, M. A. Kozhushner, et al., Sens. Actuators B 287, 218 (2019).

    Article  CAS  Google Scholar 

  9. K. S. Kurmangaleev, M. I. Ikim, M. A. Kozhushner, and L. I. Trakhtenberg, Appl. Surf. Sci. 546, 149011 (2021).

    Article  CAS  Google Scholar 

  10. G. N. Gerasimov, V. F. Gromov, M. I. Ikim, O. J. Ilegbusi, and L. I. Trakhtenberg, Sens. Actuators B 279, 22 (2019).

    Article  CAS  Google Scholar 

  11. K. S. Kurmangaleev, Candidate’s Dissertation in Mathematics and Physics (Inst. Khin. Fiz. Ross. Akad. Nauk, Moscow, 2022).

  12. M. A. Kozhushner, L. I. Trakhtenberg, A. C. Landerville, and I. I. Oleynik, J. Phys. Chem. C 117, 11562 (2013).

    Article  CAS  Google Scholar 

  13. M. A. Kozhushner, L. I. Trakhtenberg, V. L. Bodneva, et al., J. Phys. Chem. C 118, 11444 (2014).

    Article  Google Scholar 

  14. T. V. Belysheva, G. N. Gerasimov, V. F. Gromov, et al., Zh. Fiz. Khim. 84, 1706 (2010).

    Google Scholar 

  15. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, T. V. Belysheva, and O. J. Ilegbusi, Sens. Actuators, B: Chem. 169, 32 (2012).

    Article  CAS  Google Scholar 

  16. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, T. V. Belysheva, and O. J. Ilegbusi, Sens. Actuators, B: Chem. 187, 514 (2013).

    Article  CAS  Google Scholar 

  17. L. I. Trakhtenberg, V. A. Astapenko, S. V. Sakhno, et al., J. Phys. Chem. C 120, 23851 (2016).

    Article  CAS  Google Scholar 

  18. M. A. Kozhushner, V. L. Bodneva, I. I. Oleynik, T. V. Belysheva, M. I. Ikim, and L. I. Trakhtenberg, J. Phys. Chem. C 121, 6940 (2017).

    Article  CAS  Google Scholar 

  19. S. Ahlers, G. Miller, and T. Doll, Sens. Actuators B 107, 587 (2005).

    Article  CAS  Google Scholar 

  20. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sens. Actuators B 3, 147 (1991).

    Article  CAS  Google Scholar 

  21. G. N. Gerasimov, M. I. Ikim, V. F. Gromov, O. J. Ilegbusi, and L. I. Trakhtenberg, J. Alloys Compd. 883, 160817 (2021).

    Article  CAS  Google Scholar 

  22. E. L. Nagaev, Usp. Fiz. Nauk 162, 49 (1992).

    Article  CAS  Google Scholar 

  23. A. Dey, Mater. Sci. Eng. B 229, 206 (2018).

    Article  CAS  Google Scholar 

  24. N. Yamazoe, Y. Kurorawa, and T. Seiyama, Sens. Actuators B 4, 283 (1983).

    Article  CAS  Google Scholar 

  25. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, T. V. Belysheva, and O. J. Ilegbusi, Sens. Actuators B 209, 562 (2015).

    Article  CAS  Google Scholar 

  26. L. Xu, H. Song, and B. Dong, Inorg. Chem. 49, 10590 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. F. Jiang, H. Zhao, H. Chen, C. Xu, and J. Chen, RSC Adv. 6, 72015 (2016).

  28. V. F. Gromov, M. I. Ikim, G. N. Gerasimov, and L. I. Trakhtenberg, Khim. Fiz. 40 (12), 76 (2021).

    Google Scholar 

  29. F. Yang, J. Graciani, J. Evans, et al., J. Am. Chem. Soc. 133, 3444 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation through grant no. 22-19-00037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Trakhtenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trakhtenberg, L.I. Sensor Layers Based on Semiconductor Nanoparticles and Their Electronic Structure. Russ. J. Phys. Chem. B 17, 600–607 (2023). https://doi.org/10.1134/S1990793123030144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030144

Keywords:

Navigation