Skip to main content
Log in

Mechanisms of Interaction of Escherichia coli Biopolymers with 4-Hexylresorcinol

  • ON THE 100th ANNIVERSARY OF THE BIRTH OF ACADEMICIAN V.I. GOLDANSKY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this study, molecular modeling is used to study the interaction of the autoregulatory factor of bacteria, a chemical analog of the inducers of anabiosis of 4-hexylresorcinol (4HR), with the outer and inner membranes, the porin protein, peptidoglycan, DNA, and the DNA stabilizing protein Dps of the Escherichia coli (E. coli) bacterium. The concentration dependence and molecular mechanisms of the interaction of 4HR with cell polymers are studied by molecular dynamics in the full-atomic approximation. The spatial and energy characteristics of 4HR complexes with various cellular components are obtained. Using principal component analysis, the characteristics of DNA and the DNA-binding Dps protein are determined under conditions of various 4HR complexes. The obtained results, which are consistent with the experimental data, allow a deeper understanding of the processes that occur during the protection of the bacterial cell at the level of the envelope and the preservation of DNA by nucleoid proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

RЕFERENCES

  1. O. V. Bukharin, A. L. Gintsburg, Yu. M. Romanova, and G. I. El’-Registan, Survival Mechanisms of Bacteria (Meditsina, Moscow, 2005) [in Russian].

    Google Scholar 

  2. A. G. Tkachenko, Molecular Mechanisms of Stress Responses in Microorganisms (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2012) [in Russian].

    Google Scholar 

  3. S. Nair and S. E. Finkel, J. Bacteriol. 186 (13), 4192 (2004). https://doi.org/10.1128/JB.186.13.4192-4198.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. De Martino, D. Ershov, P. J. Berg, S. J. Tans, and A. S. Meyer, J. Bacteriol. 198 (11), 1662 (2016). https://doi.org/10.1128/JB.00239-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. W. E. Levinson, Review of Medical Microbiology and Immunology, 11th ed. (McGraw-Hill Medical, New York, 2010).

    Google Scholar 

  6. C. R. H. Raetz and C. Whitfield, Annu. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. E. Ultee, K. Ramijan, R. T. Dame, A. Briegel, and D. Claessen, Adv. Microb. Phys. 97, 141 (2019). https://doi.org/10.1016/bs.ampbs.2019.02.001

    Article  Google Scholar 

  8. A. Delhaye, J. F. Collet, and G. Laloux, Front. Cell. Infect. Microbiol. 9, 380 (2019). https://doi.org/10.3389/fcimb.2019.00380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. T. Cabeen and C. Jacobs-Wagner, Nat. Rev. Microbiol. 3 (8), 601 (2005). https://doi.org/10.1038/nrmicro1205

    Article  CAS  PubMed  Google Scholar 

  10. E. R. Rojas, G. Billings, P. D. Odermatt, et al., Nature 559, 617 (2018). https://doi.org/10.1038/s41586-018-0344-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. I. A. Basnak’yan, Stress in Bacteria (Meditsina, Moscow, 2003) [in Russian].

    Google Scholar 

  12. S. A. Revitt-Mills, E. K. Wright, M. Vereker, et al., MicrobiologyOpen 11 (5), e1316 (2022). https://doi.org/10.1002/mbo3.1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Maier, M. Pruteanu, M. Kuhn, et al., Nature 555, 623 (2018). https://doi.org/10.1038/nature25979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. McGlynn, N. J. Savery, and M. S. Dillingham, Mol. Microbiol. 85 (12), 20 (2012). https://doi.org/10.1111/j.1365-2958.2012.08102.x

    Article  CAS  Google Scholar 

  15. J. M. Pennington and S. M. Rosenberg, Nat. Genet. 39, 797 (2007). https://doi.org/10.1038/ng2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Y. A. Nikolaev, A. V. Tutel’yan, N. G. Loiko, et al., PLoS One 15 (9), e0239147 (2020). https://doi.org/10.1371/journal.pone.0239147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. E. V. Tereshkin, N. G. Loiko, K. B. Tereshkina, and Yu. F. Krupyanskii, Khim. Fiz. 40 (11), 48 (2021).

    Google Scholar 

  18. E. M. Windels, B. Bergh, and J. Michiels, PLoS Pathog. 16 (5), e1008431 (2020). https://doi.org/10.1371/journal.ppat.1008431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. H. M. Amemiya, J. Schroeder, and P. L. Freddolino, Transcription 12 (4), 182 (2021). https://doi.org/10.1080/21541264.2021.1973865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. B. A. Shen and R. Landick, J. Mol. Biol. 431 (20), 4040 (2019). https://doi.org/10.1016/j.jmb.2019.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. K. Molan and D. Bertok Žgur, Int. J. Mol. Sci. 23 (7), 4008 (2022). https://doi.org/10.3390/ijms23074008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Minsky, E. Shimoni, and D. Frenkiel-Krispin, Nat. Rev. Mol. Cell. Biol. 3 (1), 50 (2002). https://doi.org/10.1038/nrm700

    Article  CAS  PubMed  Google Scholar 

  23. N. Loiko, Y. Danilova, A. Moiseenko, et al., PLoS One 15 (10), e0231562 (2020). https://doi.org/10.1371/journal.pone.0231562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu. F. Krupyanskii, Khim. Fiz. 40 (3), 60 (2021). https://doi.org/10.31857/S0207401X21030079

    Article  Google Scholar 

  25. Yu. F. Krupyanskii, V. V. Kovalenko, N. G. Loiko, et al., Biofizika 67 (4), 638 (2022). https://doi.org/10.31857/S0006302922040020

    Article  Google Scholar 

  26. M. Almirón, A. J. Link, D. Furlong, and R. Kolter, Genes Dev. 612, 2646 (1992).

    Article  Google Scholar 

  27. V. O. Karas, I. Westerlaken, and A. S. Meyer, J. Bacteriol. 197 (19), 3206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. L. Calhoun and Y. Kwon, J. Appl. Microbiol. 110, 375 (2011). https://doi.org/10.1111/j.1365-2672.2010.04890.x

    Article  CAS  PubMed  Google Scholar 

  29. A. Battesti, N. Majdalani, and S. Gottesman, Annu. Rev. Microbiol. 65, 189 (2011). https://doi.org/10.1146/annurev-micro-090110-102946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. A. de la Garza-García, S. Ouahrani-Bettache, S. Lyonnais, et al., Front. Microbiol. 12, 794535 (2021). https://doi.org/10.3389/fmicb.2021.794535

    Article  PubMed  PubMed Central  Google Scholar 

  31. K. Algu, V. S. C. Choi, R. S. Dhami, and D. A. K. Duncan, J. Exp. Microbiol. Immunol. 11, 60 (2007).

    Google Scholar 

  32. R. A. Grant, D. J. Filman, S. E. Finkel, et al., Nat. Struct. Biol., No. 5, 294 (1998).

  33. D. Frenkiel-Krispin and A. Minsky, Nat. Struct. Biol. 156, 311 (2006).

    CAS  Google Scholar 

  34. N. G. Loiko, N. E. Suzina, V. S. Soina, et al., Mikrobiologiya 86 (6), 703 (2017).

    Google Scholar 

  35. V. Kovalenko, A. Popov, G. Santoni, et al., Acta Crystallogr. F76, 568 (2020).

    Article  CAS  Google Scholar 

  36. D. O. Sinitsyn, N. G. Loiko, S. K. Gularyan, et al., Khim. Fiz. 36 (9) (2017).

  37. A. Moiseenko, N. Loiko, K. Tereshkina, et al., Biochem. Biophys. Res. Commun. 517 (3), 463 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. E. V. Tereshkin, K. B. Tereshkina, and Y. F. Krupyanskii, JPCS 2056 (1), 012016 (2021).

    Google Scholar 

  39. E. Tereshkin, K. Tereshkina, N. Loiko, et al., J. Biomol. Struct. Dyn. 37, 2600 (2018).

    Article  PubMed  Google Scholar 

  40. E. V. Tereshkin, K. B. Tereshkina, V. V. Kovalenko, et al., Khim. Fiz. 38 (40), 48 (2019).

    Google Scholar 

  41. E. V. Tereshkin, N. G. Loiko, K. B. Tereshkina, V. V. Kovalenko, Y. F. Krupyanskii, Rus. J. Phys. Chem. B 16 (4), 726. https://doi.org/10.1134/S1990793122040285

  42. K. B. Tereshkina, N. G. Loiko, E. V. Tereshkin, et al., Aktual. Vopr. Biol. Fiz. Khim. 7 (2), 235 (2022).

    Google Scholar 

  43. A. Lacqua, O. Wanner, T. Colangelo, M. G. Martinotti, and P. Landini, Appl. Environ. Microbiol. 72, 956 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H. Li, B. C. Wang, W. J. Xu, X. M. Lin, and X. X. Peng, J. Proteome Res. 7, 4040 (2007).

    Article  Google Scholar 

  45. A. Sueki, F. Stein, M. M. Savitski, J. Selkrig, and A. Typas, mSystems 5 (2), e00808-19 (2020). https://doi.org/10.1128/mSystems.00808-19

    Article  PubMed  PubMed Central  Google Scholar 

  46. M. M. Davis, A. M. Brock, T. G. DeHart, et al., PLoS Pathog. 17 (5), e1009546 (2021). https://doi.org/10.1371/journal.ppat.1009546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C. Howe, F. Ho, A. Nenninger, P. Raleiras, K. Stensjö, J. Biol. Chem. 293 (43), 16635 (2018). https://doi.org/10.1074/jbc.RA118.002425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. J. R. Theoret, K. K. Cooper, B. Zekarias, et al., Clin. Vaccine Immunol. 19 (9), 1426 (2012). https://doi.org/10.1128/CVI.00151-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. G. I. El’-Registan, A. L. Mulyukin, Yu. A. Nikolaev, et al., Mikrobiologiya 75 (4), 446 (2006).

    Google Scholar 

  50. A. Kozubek and J. H. Tyman, Chem. Rev. 99 (1), 1 (1999). https://doi.org/10.1021/cr970464o

    Article  CAS  PubMed  Google Scholar 

  51. N. G. Loiko, N. A. Kryazhevskikh, N. E. Suzina, et al., Mikrobiologiya 80 (4), 465 (2011).

    CAS  Google Scholar 

  52. E. V. Tereshkin, K. B. Tereshkina, and Yu. F. Krupyanskii, Aktual. Vopr. Biol. Fiz. Khim. 5 (4), 619 (2020).

    Google Scholar 

  53. N. G. Loiko, A. L. Mulyukin, A. N. Kozlova, et al., Prikl. Biokhim. Mikrobiol. 45 (2), 181 (2009).

    Google Scholar 

  54. O. K. Davydova, D. G. Deryabin, A. I. Nikiyan, and G. I. El’-Registan, Mikrobiologiya 74 (5), 616 (2005).

    CAS  Google Scholar 

  55. A. L. Mulyukin, V. V. Sorokin, N. G. Loiko, et al., Mikrobiologiya 71 (1), 37 (2002).

    Google Scholar 

  56. Yu. F. Kpupyanckii, P. P. Nokc, N. G. Loiko, et al., Biofizika 56 (1), 13 (2011).

    Google Scholar 

  57. Yu. F. Krupyanskii, E. G. Abdulnasyrov, N. G. Loiko, et al., Khim. Fiz. 31 (3), 60 (2012).

    CAS  Google Scholar 

  58. K. B. Tereshkina, A. S. Stepanov, D. O. Sinitsyn, and Yu. F. Krupyanskii, Khim. Fiz. 33 (7), 64 (2014). https://doi.org/10.7868/S0207401X14070139

    Article  CAS  Google Scholar 

  59. O. N. Il’inskaya, A. I. Kolpakov, P. V. Zelenikhin, et al., Mikrobiologiya 71 (2), 194 (2002).

    Google Scholar 

  60. O. K. Davydova, D. G. Deryabin, and G. I. El’-Registan, Mikrobiologiya 75 (5), 662 (2006).

    CAS  Google Scholar 

  61. O. K. Davydova, D. G. Deryabin, and G. I. El’-Registan, Mikrobiologiya 75 (5), 654 (2006).

    CAS  Google Scholar 

  62. D. S. Gupta, J. Bacteriol. 174 (24), 7963 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. D. Szatmári, P. Sárkány, B. Kocsis, et al., Sci. Rep. 10, 12002 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. C. Sohlenkamp and O. Geiger, FEMS Microbiol. Rev. 40 (1), 133 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. S. W. Cowan, R. M. Garavito, J. N. Jansonius, et al., Structure 3 (10), 1041 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. H. Labischinski, E. W. Goodell, A. Goodell, and M. L. Hochberg, J. Bacteriol. 173 (2), 751 (1991). https://doi.org/10.1128/jb.173.2.751-756.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. L. Gan, S. Chen, and G. J. Jensen, Proc. Natl. Acad. Sci. USA 105 (48), 18953 (2008). https://doi.org/10.1073/pnas.0808035105

    Article  PubMed  PubMed Central  Google Scholar 

  68. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. A. A. Granovsky, Firefly version 8.2.0. http://classic.chem.msu.su/gran/firefly/index.html.

  70. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14 (1), 33 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. A. Amadei, A. B. Linssen, and H. J. Berendsen, Proteins 17 (4), 412 (1993). https://doi.org/10.1002/prot.340170408

    Article  CAS  PubMed  Google Scholar 

  72. J. Aqvist and J. Marelius, Comb. Chem. High Throughput Screening 4, 613 (2001).

    Article  CAS  Google Scholar 

  73. T. Hansson, J. Marelius, and J. Aqvist, J. Comput. Aided Mol. Des. 12, 27 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. N. E. Suzina, A. L. Mulyukin, N. G. Loiko, et al., Mikrobiologiya 70 (5), 776 (2001).

    CAS  Google Scholar 

Download references

Funding

This study was carried out as part of a state task of the Ministry of Education and Science of Russia on the topic FFZE-2022-0011 (registration numbers 122040400089-6 and 122040800164-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Tereshkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshkin, E.V., Tereshkina, K.B., Loiko, N.G. et al. Mechanisms of Interaction of Escherichia coli Biopolymers with 4-Hexylresorcinol. Russ. J. Phys. Chem. B 17, 608–619 (2023). https://doi.org/10.1134/S1990793123030132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030132

Keywords:

Navigation