Skip to main content
Log in

Inhomogeneous Magnetic Structure of the Metallic FM Part of Co/CoO Nanoparticles by the 59Co Nuclear Magnteic Resonance Method

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Local magnetic structure of the ferromagnetic (FM) core of Co/CoO nanoparticles with sizes ranging from 5 to 30 nm was investigated. Results of nuclear magnetic resonance (NMR) studies indicate that the Co/CoO nanoparticles are not uniformly magnetized. The examined nanoparticles of all sizes exhibit an FM/antiferromagnetic (AFM) interaction leading to spin canting in the FM region. In all cases, the FM part is pinned with the AFM part even without cooling in external magnetic field. NMR data reveal the coexistence of volumes with collinear and non-collinear magnetic moments in the FM core of the nanoparticles. The ratio of these volumes was quantitatively assessed. It was surmised that the non-collinear (canted) magnetic moments result from interactions between the FM metallic cobalt core of the nanoparticles and AFM surface layers comprised of cobalt oxide CoO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. G. N. Gerasimov, V. P. Gromov, M. I. Ikim, et al., Russ. J. Chem. Phys. 40, 65 (2021).

    Google Scholar 

  2. S. G. Vadchenko and M. I. Alymov., Russ. J. Chem. Phys. 41, 22 (2021).

    Google Scholar 

  3. N. S. Zakharov, A. N. Popova, Y. A. Zakharova, et al., Russ. J. Chem. Phys. 41, 84 (2021).

    Google Scholar 

  4. A. M. Zhukov, V. I. Solodilov, I. V. Tretiakov, et al., Russ. J. Chem. Phys. 41, 64 (2022).

    Google Scholar 

  5. S. P. Gubin, Y. A. Koksharov, G. B. Khomutov, and G. Y. Yurkov, Russ. Chem. Rev. 74(b), 489 (2005).

  6. I. P. Suzdalev, Y. V. Maksimov, S. V. Novichikhin, et al., Russ. J. Chem. Phys. 19, 401 (2001).

    Google Scholar 

  7. A. A. Shmyreva, V. V. Matveev, M. I. Biryukova, and G. Y. Yurkov, Russ. Chem. 32, 61 (2012).

    Google Scholar 

  8. F. Crundwell, M. Moats, V. Ramachandran, et al., Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals (Elsevier, Amsterdam, 2011).

    Google Scholar 

  9. A. N. Yadav, A. K. Singh, P. Kumar, and K. Singh, Nanoscale Res. Lett. 15, 1 (2020).

    Article  Google Scholar 

  10. D. K. Pradhan, S. Kumari, and P. D. Rack, Nanomaterials 10, 2072 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. G. Y. Yurkov, D. A. Baranov, A. V. Kozinkin, et al., Inorg. Mater. 42, 1012 (2020).

    Article  Google Scholar 

  12. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).

    Article  Google Scholar 

  13. J. Nogués, J. Sort, V. Langlais, et al., Phys. Rev. 422, 65 (2005).

    Google Scholar 

  14. X. Batlle and A. Labarta, J. Phys. D: Appl. Phys. 35, 201 (2002).

    Article  Google Scholar 

  15. J. Frenkel and J. Doefman, Nature 126, 274 (1930).

    Article  Google Scholar 

  16. A. E. Berkowitz, W. J. Schuele, and P. J. Flanders, J. Appl. Phys. 39, 1261 (1968).

    Article  CAS  Google Scholar 

  17. T. J. Daou, J. M. Greneche, S. J. Lee, et al., J. Phys. Chem. C 114, 8794 (2010).

    Article  CAS  Google Scholar 

  18. A. P. Roberts, T. P. Almeida, and N. S. Church, Earth Planet. Sci. Lett. 501, 103 (2018).

    Article  Google Scholar 

  19. A. V. Kessenikh, A. Ataev, B. N. Plakhutin, and M. A. Fedotov, Russ. J. Chem. Phys. 12, 1687 (1993).

    CAS  Google Scholar 

  20. Y. I. Petrov, Russ. J. Chem. Phys. 22, 3 (2003).

    CAS  Google Scholar 

  21. Y. A. Koksharov, O. V. Popkov, S. N. Ivicheva, et al., Chem. Phys. 4, 47 (2010).

    Google Scholar 

  22. V. V. Matveev, D. A. Baranov, G. Y. Yurkov, et al., Chem. Phys. Lett. 422, 402 (2006).

    Article  CAS  Google Scholar 

  23. A. A Shmyreva, Candidate’s Dissertation in Physics and Mathematics (St. Petersburg State Univ., St. Petersburg, 2013).

  24. G. Allodi, A. Banderini, R. De Renzi, and C. Vignali, Rev. Sci. Instrum. 76, 839 (2005).

    Article  Google Scholar 

  25. C. Dobbrow and A. M. Schmidt, Beilstein J. Nanotech. 3, 75 (2012).

    Google Scholar 

  26. A. A. Shmyreva, V. V. Matveev, and G. Y. Yurkov, Int. J. Nanotech. 13, 126 (2016).

    Article  CAS  Google Scholar 

  27. K. N. Mikhalev, A. Y. Germov, M. A. Uimin, et al., Mater. Res. Expr. 5 (2018). https://doi.org/10.1088/2053-1591/aac1f3

  28. M. Kawakami, J. Phys. Soc. Jpn. 40, 56 (1976).

    Article  CAS  Google Scholar 

  29. V. Matveev, V. Ryzhov, A. Lashkul, et al., EPJ Web of Conf. 75, 05015 (2014).

  30. N. T. Thanh, Magnetic Nanoparticles: From Fabrication to Clinical Applications (CRC Press, Boca Raton, 2012).

    Book  Google Scholar 

  31. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003).

    CAS  Google Scholar 

  32. W. V. Prescott and A. I. Schwartz, Nanorods, Nanotubes, and Nanomaterials Research Progress (Nova Publishers, New York, 2008).

    Google Scholar 

  33. M. P. Petrov and E. A. Turov, Appl. Spectrosc. Rev. 5, 265 (1972).

    Article  Google Scholar 

  34. P. Scholzen, G. Lang, A. S. Andreev, et al., Phys. Chem. Chem. Phys. 24, 11898 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. A. S. Andreev, J. B. D. E. de Lacaillerie, O. B. Lapina, et al., Phys. Chem. Chem. Phys. 17, 14598 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. I. S. Oliveira and A. P. Guimarães, J. Magn. Magn. Mater. 170, 277 (1997).

    Article  CAS  Google Scholar 

  37. R. Lamber, S. Wetjen, and N. I. Jaeger, Phys. Rev. B 51, 10968 (1995).

    Article  CAS  Google Scholar 

  38. A. N. Ulyanov, D. S. Yang, A. S. Mazur, et al., J. Appl. Phys. 109, 123928 (2011).

    Article  Google Scholar 

  39. J. M. D. Coey, Phys. Rev. Lett. 27, 1140 (1971).

    Article  CAS  Google Scholar 

  40. K. Haneda, J. Appl. Phys. 53, 2686 (1982).

    Article  CAS  Google Scholar 

  41. T. Okada, J. Magn. Magn. Mater. 31, 903 (1983).

    Article  Google Scholar 

  42. K. Haneda and A. H. Morrish, J. Appl. Phys. 63, 4258 (1988).

    Article  CAS  Google Scholar 

  43. F. T. Parker, M. W. Foster, D. T. Margulies, et al., Phys. Rev. B 47, 7885 (1993).

    Article  CAS  Google Scholar 

  44. S. Linderoth, P. V. Hendriksen, F. Bødker, et al., J. Appl. Phys. 75, 6583 (1994).

    Article  CAS  Google Scholar 

  45. M. P. Morales, C. J. Serna, F. Bødker, et al., J. Phys.: Condens. Matter 9, 5461 (1997).

    CAS  Google Scholar 

  46. R. H. Kodama, S. A. Makhlouf, and A. E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997).

    Article  CAS  Google Scholar 

  47. R. F. L. Evans, R. W. Chantrell, and O. Chubykalo-Lesenko, Phys. Rev. 85, 014433 (2013).

    Article  Google Scholar 

  48. H. M. Lu, W. T. Zheng, and Q. Jiang, J. Phys. D: Appl. Phys. 40, 320 (2007).

    Article  CAS  Google Scholar 

  49. D. Lin, A. C. Nunes, C. F. Majkrzak, et al., J. Magnet. Magnet. Mater. 145, 343 (1995).

    Article  CAS  Google Scholar 

  50. F. Gazeau, E. Dubois, M. Hennion, et al., EPL (Europhys. Lett.) 40, 575 (1997).

    Article  CAS  Google Scholar 

  51. F. Gazeau, J. C. Bacri, and F. Gendron, J. Magnet. Magnet. Mater. 186, 175 (1998).

    Article  CAS  Google Scholar 

  52. B. Issa, I. M. Obaidat, B. A. Albiss, et al., Int. J. Mol. Sci. 14, 21266 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was performed under financial support of the Ministry of Education and Science of the Russian Federation (Reg. no. 122040400099-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Dzhangurazov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmyreva, A.A., Kirillov, V.E., Dzhangurazov, E.B. et al. Inhomogeneous Magnetic Structure of the Metallic FM Part of Co/CoO Nanoparticles by the 59Co Nuclear Magnteic Resonance Method. Russ. J. Phys. Chem. B 17, 764–773 (2023). https://doi.org/10.1134/S1990793123030120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030120

Keywords:

Navigation