Skip to main content
Log in

Modeling Conformational Rearrangements of a Macromolecule Adsorbed on a Metal Nanoparticle in an External Electric Field

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The properties of a specially created analytical model of conformational rearrangements of a Gaussian macromolecular chain adsorbed on the surface of a metal nanoparticle in an external electric field are investigated. The results of calculations based on this model of the structure of polyelectrolyte chains and molecular dynamics (MD) modeling of polypeptide conformations near a gold nanoparticle are presented. It is found that an increase in the strength of the external electric field leads to a displacement of the links of the macromolecular edge to one of the poles of the polarized nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

RЕFERENCES

  1. P. Zhang, Y. Chiu, L. H. Tostanoski, et al., ACS Nano 9, 6465 (2015). https://doi.org/10.1021/acsnano.5b02153

    Article  CAS  PubMed  Google Scholar 

  2. H. Zhang, S. Nayak, W. Wang, et al., Langmuir 33, 12227 (2017). https://doi.org/10.1021/acs.langmuir.7b02359

    Article  CAS  PubMed  Google Scholar 

  3. M. A. Fuller and I. Koper, Nano Convergence 6, 11 (2019). https://doi.org/10.1186/s40580-019-0183-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. T. A. Qiu, M. D. Torelli, A. M. Vartanian, et al., Anal. Chem. 89, 1823 (2017). https://doi.org/10.1021/acs.analchem.6b04161

    Article  CAS  PubMed  Google Scholar 

  5. A. S. Angelatos, B. Radt, and F. Caruso, J. Phys. Chem. B 109, 3071 (2005). https://doi.org/10.1021/jp045070x

    Article  CAS  PubMed  Google Scholar 

  6. N. V. Dokhlikova, A. K. Gatin, S. Yu. Sarvadii, et al., Khim. Fiz. 39 (9), 9 (2020). https://doi.org/10.1134/S1990793120050036

    Article  Google Scholar 

  7. M. V. Grishin, A. K. Gatin, V. G. Slutskii, et al., Khim. Fiz. 40 (6), 10 (2021). https://doi.org/10.1134/S1990793121020196

    Article  Google Scholar 

  8. N. V. Dokhlikova, A. K. Gatin, S. Yu. Sarvadii, et al., Khim. Fiz. 40 (7), 67 (2021). https://doi.org/10.1134/S1990793121040023

    Article  Google Scholar 

  9. M. V. Grishin, A. K. Gatin, V. G. Slutskii, et al., Khim. Fiz. 41 (6), 3 (2022). https://doi.org/10.1134/S199079312232001X

    Article  Google Scholar 

  10. Y. Chen, E. R. Cruz-Chu, J. Woodard, et al., ACS Nano 6, 8847 (2012). https://doi.org/10.1021/nn3027408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. E. Cantini, X. Wang, P. Koelsch, et al., Acc. Chem. Res. 49, 1223 (2016). https://doi.org/10.1021/acs.accounts.6b00132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. N. Yu. Kruchinin and M. G. Kucherenko, Colloid J. 81, 110, (2019). https://doi.org/10.1134/S1061933X19020078

  13. N. Yu. Kruchinin and M. G. Kucherenko, Russ. J. Phys. Chem. A 94, 1433 (2020). https://doi.org/10.1134/S0036024420070171

  14. N. Yu. Kruchinin and M. G. Kucherenko, Biophysics 65, 186 (2020). https://doi.org/10.1134/S0006350920020104

  15. N. Yu. Kruchinin and M. G. Kucherenko, Colloid J. 82, 136 (2020). https://doi.org/10.1134/S1061933X20020088

  16. N. Yu. Kruchinin and M. G. Kucherenko, Colloid J. 82, 392 (2020). https://doi.org/10.1134/S1061933X20040067

  17. M. G. Kucherenko, A. P. Rusinov, T. M. Chmereva, et al., Optics and Spectroscopy 107, 480 (2009). https://doi.org/10.1134/S0030400X0909029X

  18. M. G. Kucherenko, S. V. Izmodenova, N. Yu. Kruchinin, et al., High Energy Chem. 43, 592 (2009). https://doi.org/10.1134/S0018143909070169

    Article  CAS  Google Scholar 

  19. J. C. Phillips, R. Braun, W. Wang, et al., J. Comput. Chem., No. 26, 1781 (2005). https://doi.org/10.1002/jcc.20289

  20. M. G. Kucherenko and T. M. Chmereva, Vestn. OGU, No. 9, 177 (2008).

    Google Scholar 

  21. M. G. Kucherenko, N. Yu. Kruchinin, and T. M. Chmereva, Vestn. Orenb. Gos. Univ., No. 5, 124 (2010).

  22. M. G. Kucherenko, S. V. Izmodenova, T. M. Chmereva, et al., Vestn. Orenb. Gos. Univ., No. 9, 100 (2013).

  23. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  24. D. Bashford and M. Bellott, et al., J. Phys. Chem. B 102, 3586 (1998). https://doi.org/10.1021/jp973084f

    Article  PubMed  Google Scholar 

  25. H. Heinz, R. A. Vaia, B. L. Farmer, et al., J. Phys. Chem. C 112, 17281 (2008). https://doi.org/10.1021/jp801931d

    Article  CAS  Google Scholar 

  26. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983). https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  27. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993). https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  28. M. Shankla and A. Aksimentiev, Nat. Commun. 5, 5171 (2014). https://doi.org/10.1038/ncomms6171

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Ministry of Science and Higher Education as part of scientific project no. FSGU-2020-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Neyasov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucherenko, M.G., Neyasov, P.P. & Kruchinin, N.Y. Modeling Conformational Rearrangements of a Macromolecule Adsorbed on a Metal Nanoparticle in an External Electric Field. Russ. J. Phys. Chem. B 17, 745–754 (2023). https://doi.org/10.1134/S1990793123030053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030053

Keywords:

Navigation