Skip to main content
Log in

Effect of Obstructed Space on the Parameters of Shock Waves from the Deflagration of Hydrogen–Air Clouds

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This article considers the generation of pressure waves during the combustion of hydrogen–air clouds in various modes. The problem of the combustion of spherical clouds, in which the inner spherical volume burns with an apparent velocity of 240 m/s, and the remaining outer layer with an apparent velocity of 100 m/s, is considered. Also, for comparison, two limiting cases are considered: the combustion of the entire cloud with constant velocities of 100 and 240 m/s. The problem is solved numerically in a one-dimensional formulation, with the combustion front clearly identified. As a result, using precise numerical simulation, it is shown that the deflagration of secondary volumes of hydrogen–air mixtures in an open space at a slow speed (up to 100 m/s) does not lead to an increase in pressure in the waves generated earlier during the deflagration of the primary volume at a fast speed corresponding to deflagration in an obstructed space. Such a situation is observed for the inner region of various sizes (the portion of the cloud that burns at a high rate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. A. C. van den Berg, J. Hazard. Mater. 12 (1), 1 (1985).

    Article  CAS  Google Scholar 

  2. W. C. Brasie and D. W. Simpson, Loss Prev. 2, 91 (1968).

    Google Scholar 

  3. M. A. Sadovskii, Explosion Physics. Collection No. 1 of Research Papers in the Field of Explosion Physics (Izd. Akad. Nauk SSSR, Moscow, 1952) [in Russian].

    Google Scholar 

  4. A. A. Borisov, B. E. Gel’fand, and S. A. Tsyganov, Fiz. Goreniya Vzryva 21 (2), 90 (1985).

    CAS  Google Scholar 

  5. H. J. Pasman and H. G. Wagner, in Proc. 5th Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries (Societe de Chimie Industrielle, Paris, 1986), Vol. 3.

  6. A. A. Borisov, B. E. Gel’fand, and S. A. Tsyganov, Fiz. Goreniya Vzryva 25 (1), 90 (1989).

    Google Scholar 

  7. G. I. Taylor, Proc. R. Soc. London, Ser. A 186, 273 (1946).

    Article  CAS  Google Scholar 

  8. R. A. Strehlow, R. T. Luckritz, A. A. Adamczyk, and S. A. Shimpi, Combust. Flame 35, 297 (1979).

    Article  CAS  Google Scholar 

  9. A. L. Kuhl, M. M. Kamel, and A. K. Oppenheim, Combustion 14, 1201 (1973).

    Article  Google Scholar 

  10. F. A. Williams, J. Fluid Mech. 127, 429 (1976).

    Article  Google Scholar 

  11. B. J. Wiekema, J. Hazard. Mater. 3 (3), 221 (1980).

    Article  Google Scholar 

  12. Methods for the Calculations of Physical Effects (“Yellow Book”). CPR 14E, Ed. by C. J. H. van den Bosch and R. A. P. M. Weterings (Committee for the Prevention of Disasters, The Hague, 2005).

    Google Scholar 

  13. A. A. Agapov, V. S. Safonov, S. I. Sumskoi, and A. A. Shvyryaev, Bezop. Truda Prom-sti, No. 5, 36 (2020).

    Google Scholar 

  14. Safety Guide “Methodology for Assessing the Consequences of Accidental Explosions of Fuel-Air Mixtures” (Nauchn.-Tekh. Tsentr Probl. Promyshl. Bezop., Moscow, 2019), Ser. 27, Iss. 15 [in Russian].

  15. R. J. Harris and M. J. Wickens, Understanding Vapour Cloud Explosions: An Experimental Study (Institution of Gas Engineers, London, 1989).

  16. A. J. Harrison and J. A. Eyre, Combust. Sci. Technol. 52, 121 (1987).

    Article  CAS  Google Scholar 

  17. C. J. M. van Wingerden, in Proc. 6th Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries (Eur. Fed. Chem. Eng. Norw. Soc. Chart. Eng., Oslo, 1989), p. 26-1.

  18. J. P. Zeeuwen, C. J. M. van Wingerden, and R. W. Dauwe, in Proc. 4th Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries, Chem. Eng. Symp. Ser. No. 80 (Institution of Chemical Engineers, Great Britain, 1983), p. D-20.

  19. H. Pfortner and H. Schneider, ICT Projektforscung 1983. Forschungsprogramm “Proze \(\beta \) gasfreisetzung—Explosion in der Gasfabrik und Auswirkungen von Druckwellen auf das Containment”. Ballonvesuche zur Untersuchung der Deflagration von Wasserstoff/Luft-Gemischen (Abschlu \(\beta \) bericht) (Fraunhofer-institut fur treib- und explosivstoffe, 1983).

  20. S. A. Gubin and V. A. Shargatov, Fiz. Goreniya Vzryva 25 (5), 111 (1989).

    CAS  Google Scholar 

  21. A. A. Borisov, B. E. Gel’fand, S. A. Gubin, V. V. Odintsov, and V. A. Shargatov, Khim. Fiz. 3 (5), 435 (1986).

    Google Scholar 

  22. S. A. Gubin and V. A. Shargatov, Khim. Fiz. 8 (2), 286 (1989).

    CAS  Google Scholar 

  23. S. I. Sumskoi, A. S. Sofyin, A. A. Agapov, and S. Kh. Zainetdinov, J. Phys.: Conf. Ser. 1686, 012085 (2020).

    Google Scholar 

  24. I. S. Yakovenko, I. S. Medvedkov, and A. D. Kiverin, Khim. Fiz. 41 (3), 85 (2022).

    Google Scholar 

  25. S. B. Viktorov, S. A. Gubin, I. V. Maklashova, and V. I. Pepekin, Khim. Fiz. 24 (12), 22 (2005).

    CAS  Google Scholar 

  26. Ch. L. Mader, Numerical Modeling of Detonation (Univ. California Press, Los Angeles, 1979).

  27. F. Bartlmä, Gasdynamik der Verbrennung (Springer, Berlin, 1975).

    Book  Google Scholar 

  28. S. I. Sumskoi, A. S. Sof’in, S. Kh. Zainetdinov, and A. A. Agapov, Khim. Fiz. 39 (8), 28 (2020).

    Google Scholar 

  29. V. N. Mikhalkin, S. I. Sumskoi, A. M. Tereza, et al., Khim. Fiz. 41 (8), 1 (2022).

    Google Scholar 

Download references

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-785 with the Joint Institute for High Temperatures, Russian Academy of Sciences, dated September 23, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Sumskoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumskoi, S.I., Sof’in, A.S., Zainetdinov, S.K. et al. Effect of Obstructed Space on the Parameters of Shock Waves from the Deflagration of Hydrogen–Air Clouds. Russ. J. Phys. Chem. B 17, 419–424 (2023). https://doi.org/10.1134/S199079312302015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312302015X

Keywords:

Navigation