Skip to main content
Log in

Physicochemical and Mass Transfer Processes when Samples from Fluxed Magnetite Iron Ore Concentrates are Heated in a Thermal Plant

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract—

It is established that firing samples (granules) in a layer of fluxed magnetite iron ore concentrates are accompanied by complex physicochemical processes related to the oxidation of magnetite and the decomposition of carbonates. When they are heated, along with heat exchange processes, mass transfer processes also occur. These processes are interrelated and affect each other, as well as the degree of completion of the processes of oxidation and decarbonization in the layer. The oxidation mechanism of the samples containing magnetite is considered. A model of the mass transfer process for the period of decomposition of carbonates is refined. An equation is proposed that describes the kinetics of magnetite oxidation in samples upon heating for a more general form of boundary conditions. An equation is presented that makes it possible to determine the rate constant of the oxidation process depending on the characteristics of the heat-carrier gas and the properties of the material. A calculation procedure is developed to determine the diffusion coefficient of oxygen in the combustion products of various fuels. Experiments are carried out to study the kinetics of oxidation and decarbonization processes in a layer of granules on an experimental setup, which make it possible to simulate these processes in relation to different periods of their heat treatment in thermal plants and determine the mass transfer coefficients. This will make it possible to determine the degree of completion of processes by the height of the layer at the given values of the temperature and duration of firing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. V. N. Korolev, Heat and Mass Transfer (UGTU–UPI, Yekaterinburg, 2006) [in Russian].

  2. O. N. Bryukhanov and S. N. Shevchenko, Heat and Mass Transfer (Infra-M, Moscow, 2012) [in Russian].

  3. G. N. Dul’nev, Theory of Heat and Mass Transfer (NIU ITMO, St. Petersburg, 2012) [in Russian].

    Google Scholar 

  4. X. Y. Yang, Z. Q. Gong, and F. L. Liu, J. Cent. South Univ. Technol. 11 (2), 152 (2004).

    Article  CAS  Google Scholar 

  5. Q. J. Gao, Y. S. Shen, and C. S. Liu, J. Iron Steel Res. Int. 23 (10), 1007 (2016).

    Article  Google Scholar 

  6. H. Q. Zhang and J. T. Fu, Int. J. Miner. Metall. Mater. 24 (6), 603 (2017).

    Article  CAS  Google Scholar 

  7. H. Q. Zhang, J. T. Fu, and Z. Q. Guo, J. Wuhan Univ. Technol. Mater. Sci. Ed. 33 (6), 1516 (2018).

    CAS  Google Scholar 

  8. R. Q. Liang, S. Yang, and J. C. He, J. Iron Steel Res. Int. 20 (9), 16 (2013).

    Article  CAS  Google Scholar 

  9. L. V. Petrov and V. M. Solyanikov, Khim. Fiz. 40 (11), 9 (2021).

    Google Scholar 

  10. N. S. Shaitura and M. N. Larichev, Khim. Fiz. 39 (9), 18 (2020).

    Google Scholar 

  11. A. A. Ryazanov, R. Z. Rakhimov, V. I. Vinnichenko, et al., Stroit. Mater., No. 3, 54 (2020).

  12. N. S. Frumina, E. S. Kruchkova, and S. P. Mushtakova, Analytical Chemistry of Calcium. Series: Analytical Chemistry of Elements (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  13. V. I. Koloberdin and N. S. Bobrova, Izv. Vyssh. Uchebn. Zaved., Khim. Tekhnol. 48 (1), 81 (2005).

    CAS  Google Scholar 

  14. V. O. Golubev and I. N. Beloglazov, Zap. Gorn. Inst. 169, 104 (2006).

    Google Scholar 

  15. A. A. Mantashyan, Khim. Fiz. 40 (4), 18 (2021).

    Google Scholar 

  16. N. I. Kol’tsov, Khim. Fiz. 40 (11), 3 (2021).

    Google Scholar 

  17. A. Eriksson, C. Andersson, and P. Semberg, ISIJ Int. 61 (5), 1439 (2021).

    Article  CAS  Google Scholar 

  18. T. K. S. Kumar, N. N. Viswanathan, and B. Bjorkman, Metall. Mater. Trans. B 50 (1), 162 (2019).

    Article  Google Scholar 

  19. A. Sardari, E. K. Alamdari, S. Z. Toncaboni, et al., Int. J. Miner. Metall. Mater. 24 (5), 486 (2017).

    Article  CAS  Google Scholar 

  20. V. V. Kafarov, Foundations of Mass Transfer (Vyssh. shkola, Moscow, 1962) [in Russian].

  21. V. M. Abzalov, V. A. Gorbachev, S. N. Evstyugin, et al., Physico-Chemical and Thermal Engineering Bases for the Production of Iron Ore Pellets, Ed. by L. I. Leont’ev (MITs, Yekaterinburg, 2015) [in Russian].

  22. I. O. Edstrem, Probl. Sovrem. Metall., No. 1, 3 (1958).

  23. B. P. Yur’ev, L. B. Bruk, N. A. Spirin, et al., Fundamentals of the Theory of Processes in the Roasting of Iron Ore Pellets (NTI UrFU, Nizhnii Tagil, 2018).

  24. Yu. A. Berman and A. D. Markov, Izv. Vuzov. Chern. Metall., No. 1, 31 (1971).

  25. D. F. Ball, F. G. Buler, and H. Ratter, Iron and Steel 39 (4), 150 (1966).

    CAS  Google Scholar 

  26. L. von Bogdandy and H. J. Engell, Die Reduktion der Eisenerze (Stahleisen, Düsseldorf, 1967).

    Book  Google Scholar 

  27. S. G. Bratchikov, Yu. A. Berman, Ya. L. Belotserkovskii, et al., Heat Engineering of Agglomeration of Iron Ore Raw Materials (Metallurgiya, Moscow, 1970) [in Russian].

    Google Scholar 

  28. I. A. Kopyrin, N. I. Perminov, and Yu. M. Borts, Izv. Vuzov. Chern. Metall., No. 6, 28 (1970).

  29. A. N. Pokhvisnev and B. A. Savel’ev, Stal’, No. 2, 105 (1958).

  30. Yu. S. Yusfin, T. N. Bazilevich, and L. Yu. Savitskaya, Izv. Vuzov. Chern. Metall., No. 9, 31 (1968).

  31. O. A. Esin and P. V. Gel’d, Physical Chemistry of Pyrometallurgical Processes (Metallurgizdat, Moscow, 1950), Vol. 1 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Yuriev.

Ethics declarations

In this study, the processes of oxidation and decomposition of carbonates were studied during the firing of fluxed magnetite granules. A kinetic equation is proposed to describe the process of granule oxidation. The model of mass transfer for the period of decomposition of carbonates in granules has been refined, and a method for calculating the diffusion coefficient of oxygen has been developed. The mass transfer coefficients, which characterize the rate of the processes of oxidation and decarbonization in the layer of granules during the firing period are determined and which allow determining the degree of completion of these processes in different periods of heat treatment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuriev, B.P., Dudko, V.A. Physicochemical and Mass Transfer Processes when Samples from Fluxed Magnetite Iron Ore Concentrates are Heated in a Thermal Plant. Russ. J. Phys. Chem. B 17, 60–67 (2023). https://doi.org/10.1134/S199079312301030X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312301030X

Keywords:

Navigation