Skip to main content
Log in

Mechanical Characteristics of ABS Plastic After Microwave Irradiation

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The effect of microwave radiation treatment on the widely used technical acrylonitrile-butadiene-styrene (ABS) polymer widely used for 3D-printing is studied. The chemical structure and tensile strength characteristics of filled (with 3 wt % carbon fiber) and unfilled ABS plastic irradiated with microwave radiation for 300, 600, 900, and 1200 s are evaluated. It is shown that the effective irradiation time for the mechanical improvement of the filled samples is 300 s, while no significant changes in the mechanical characteristics of the initial ABS samples are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. M. Zhang, X. Song, W. Grove, et al., Proc. ASME 2016 11th Int. Manufacturing Science and Engineering Conf. (ASME, Blacksburg, VA, 2016), Vol. 3. https://doi.org/10.1115/MSEC2016-8790

  2. E. A. Lebedeva, S. A. Astaf’eva, T. S. Istomina, et al., App. Surf. Sci. 602, 154251 (2022). https://doi.org/10.1016/j.apsusc.2022.154251

    Article  CAS  Google Scholar 

  3. A. Ahmadreza, L. Mohammad, and Ch. Jamal, Appl. Therm. Eng. 193, 117003 (2021). https://doi.org/10.1016/j.applthermaleng.2021.117003

    Article  CAS  Google Scholar 

  4. A. Ferrari, J. Hunt, A. Lita, et al., J. Phys. Chem. C 118, 9346 (2014). https://doi.org/10.1021/jp501206n

    Article  CAS  Google Scholar 

  5. J. Zhou, W. Xu, Z. You, et al., Sci. Rep. 6, 25149 (2016). https://doi.org/10.1038/srep25149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Amini, T. Maeda, K. Ohno, and K. Kunitomo, ISIJ Int. 59, 672 (2019). https://doi.org/10.2355/isijinternational.ISIJINT-2018-391

    Article  CAS  Google Scholar 

  7. P. A. Zharova, A. V. Chistyakov, S. V. Lesin, et al., Khim. Fiz. 38 (6), 35 (2019). https://doi.org/10.1134/S0207401X19060104

    Article  Google Scholar 

  8. J. Li, F. Chen, L. Yang, et al., Spectrochim. Acta A 184, 361 (2017). https://doi.org/10.1016/j.saa.2017.04.075

    Article  CAS  Google Scholar 

  9. N. M. Livanova, V. A. Khazova, E. S. Pravada, et al., Khim. Fiz. 41 (7), 67 (2022). https://doi.org/10.31857/S0207401X2207010X

    Article  Google Scholar 

  10. L. S. Shibryaeva, L. R. Lyusova, S. G. Karpova, and Yu. A. Naumova, Khim. Fiz. 41 (4), 44 (2022). https://doi.org/10.31857/S0207401X22040070

    Article  Google Scholar 

  11. M. A. De Paoli, Eur. Polym. J. 19, 761 (1983). https://doi.org/10.1016/0014-3057(83)90145-3

    Article  CAS  Google Scholar 

  12. M. Guyader, L. Audouin, X. Colin, et al., Polym. Degrad. Stab. 91, 2813 (2006). https://doi.org/10.1016/j.polymdegradstab.2006.04.009

    Article  CAS  Google Scholar 

  13. B. E. Tiganisa, L. S. Burna, P. Davisa, and A. J. Hill, Polym. Degrad. Stab. 76, 425 (2002). https://doi.org/10.1016/S0141-3910(02)00045-9

    Article  Google Scholar 

  14. P. P. Levin, A. F. Efremkin, and I. V. Khudyakov, Khim. Fiz. 39 (6), 59 (2020). https://doi.org/10.31857/S0207401X20060059

    Article  Google Scholar 

  15. I. V. Zlobina, N. V. Bekrenev, and S. P. Pavlov, Vestn. Yuzhno-Ural. Gos. Univ. Ser. Mashinostr. 17 (4), 70 (2017). https://doi.org/10.14529/engin170407

    Article  Google Scholar 

  16. W. Brostow, H. E. H. Lobland, N. Hnatchuk, and J. M. Perez, Nanomaterials 7, 66 (2017). https://doi.org/10.3390/nano7030066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Chopra, K. Pande, P. S. Tupe, et al., Polym. Eng. Sci. 61, 3125 (2021). https://doi.org/10.1002/pen.25825

    Article  CAS  Google Scholar 

  18. E. M. Nurullaev, Prikl. Mekh. Tekh. Fiz. 62 (2), 53 (2021). https://doi.org/10.15372/PMTF20210205

    Article  Google Scholar 

  19. A. A. Isakova, O. L. Gribkova, A. D. Aliev, et al., Fizikokhim. Poverkhn. Zashchita Mater. 56 (4), 406 (2020). https://doi.org/10.31857/S0044185620040129

    Article  Google Scholar 

  20. L. P. Fonseca, W. R. Waldman, and M. A. De Paoli, Composites C 5, 100142 (2021). https://doi.org/10.1016/j.jcomc.2021.100142

  21. R. R. Mishra and A. K. Sharma, Composites A 81, 78 (2016). https://doi.org/10.1016/j.compositesa.2015.10.035

  22. N. M. Livanova and A. A. Popov, Khim. Fiz. 38 (3), 64 (2019). https://doi.org/10.1134/S0207401X19020109

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment of the Center for Collective Use “Investigations of Materials and Substances” of the Principal Federal Research Center of the Ural Branch of the Russian Academy of Sciences (Perm).

Funding

The reported study was supported by the Government of Perm Krai, research project no. С-26/702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Lebedeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, E.A., Astaf’eva, S.A., Trukhinov, D.K. et al. Mechanical Characteristics of ABS Plastic After Microwave Irradiation. Russ. J. Phys. Chem. B 17, 191–195 (2023). https://doi.org/10.1134/S1990793123010244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123010244

Keywords:

Navigation