Skip to main content
Log in

Synthesis, DFT, Spectroscopic Studies and Electronic Properties of Novel Arginine Derivatives

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this work, four derivatives of arginine with biologically active acids: acetylsalicylic, butyric, nicotinic, and succinic acids were obtained and characterized using UV-visible, IR, 1H NMR, and 13C NMR spectroscopy. In addition to spectroscopic analyses, DFT calculations were applied to predict the physicochemical properties of the studied compounds. The IR and NMR parameters were evaluated and compared with those experimental results obtained in the spectra. Moreover, the electronic transitions in the UV-Vis region of the electromagnetic spectrum were studied through the visualization of FMOs as well a calculation of energy gap values and TD-DFT calculations. It was found that the compounds maximally absorb the electromagnetic radiation at a wavelength range of 156.78–181.54 nm which can be due to π–π* and n–π* electronic transitions. Finally, QTAIM topological analysis showed that inter-molecular hydrogen bonds have a key role in the formation of arginine derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. T. Du and J. Han, Front. Cell Dev. Biol. 9, 1277 (2021).

    Google Scholar 

  2. A. A. Martí i Líndez and W. Reith, Cell. Mol. Life Sci. 78, 5303 (2021). https://doi.org/10.1007/s00018-021-03828-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. Tapiero, G. Mathé, P. Couvreur, and K. D. I. Tew, Biomed. Pharmacother. 56, 439 (2002). https://doi.org/10.1016/s0753-3322(02)00284-6

    Article  CAS  PubMed  Google Scholar 

  4. A. F. Vanin, Vestn. Ross. Akad. Med. Nauk 4, 3 (2000).

    Google Scholar 

  5. S. M. Morris Jr., J. Nutr. 146, 2579S (2016). https://doi.org/10.3945/jn.115.226621

    Article  CAS  PubMed  Google Scholar 

  6. A. F. Vanin, Biochemistry 7, 867 (1998).

    Google Scholar 

  7. T. C. Wascher, K. Posch, S. Wallner, et al., Biochem. Biophys. Res. Commun. 234, 35 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. J. Gambardella, W. Khondkar, M. B. Morelli, et al., Biomedicines 8, 277 (2020). https://doi.org/10.3390/biomedicines8080277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. I. A. Zhuravleva, I. A. Melentiev, and N. A. Vinogradov, Clin. Med. 4, 18 (1997).

    Google Scholar 

  10. A. L. Zefirov, R. R. Khaliullina, and A. A. Anuchin, Bull. Exp. Biol. Med. 8, 144 (1999).

    Google Scholar 

  11. A. L. Zefirov, R. R. Khaliullina, A. A. Anuchin, and A. V. Yakovlev, Neurosci. Behav. Physiol. 32, 583 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. V. T. Ivashkin and O. M. Drapkina, Ross. J. Gastroenterol., Hepatol. Coloproctol. 4, 16 (2000).

    Google Scholar 

  13. R. Keshet and A. Erez, Dis. Models Mech. 11, 8 (2018).

    Article  Google Scholar 

  14. S. Zou, X. Wang, P. Liu, C. Ke, and S. Xu, Biomed. Pharmacother. 118, 109210 (2019). https://doi.org/10.1016/j.biopha.2019.109210

    Article  CAS  PubMed  Google Scholar 

  15. L. Fultang, A. Vardon, C. De Santo, and F. Mussai, Int. J. Cancer 139, 501–509 (2016). https://doi.org/10.1002/ijc.30051

    Article  CAS  PubMed  Google Scholar 

  16. J. S. Yang, C. C. Wang, J. D. Qiu, B. Ren, and L. You, Chin. Med. J. 134, 28 (2021).

    Article  CAS  Google Scholar 

  17. T. Du and J. Han, Front. Cell Dev. Biol. 9, 1277 (2021).

    Google Scholar 

  18. B. S. Finkelman, M. Putt, T. Wang, et al., Am. Coll. Cardiol. 70, 152 (2017).

    Article  CAS  Google Scholar 

  19. K. Bibbins-Domingo, Ann. Intern. Med. 164, 836 (2016).

    Article  PubMed  Google Scholar 

  20. E. P. Trukhacheva and M. V. Ezhov, Ration. Pharmacother. Cardiol. 7, 365 (2011).

    Article  Google Scholar 

  21. S. D. Kosyura, G. G. Totolyan, I. G. Fedorov, M. A. Chichkina, and V. V. Trishina, Lechebnoe Delo 3, 36 (2015).

    Google Scholar 

  22. A. V. Smirnov, O. B. Nesterova, and R. V. Golubev, J. Nephrol. 18, 12 (2014).

    Google Scholar 

  23. D. V. Lopatik, Z. I. Kuvaeva, and O. M. Bondareva, Proc. Natl. Acad. Sci. Belarus. Chem. Ser. 56, 181 (2020). https://doi.org/10.29235/1561-8331-2020-56-2-181-186

    Article  CAS  Google Scholar 

  24. H. R. Superko, X. Q. Zhao, H. N. Hodis, and J. R. Guyton, J. Clin. Lipidol. 11, 1309 (2017). https://doi.org/10.1016/j.jacl.2017.08.005

    Article  PubMed  Google Scholar 

  25. D. V. Lopatik, Z. I. Kuvaeva, M. M. Markovich, O. M. Bondareva, and V. E. Naidenov, Proc. Natl. Acad. Sci. Belarus. Chem. Ser. 1, 68 (2014).

    Google Scholar 

  26. W. Li, H. Ma, S. Li, and J. Ma, Chem. Sci. 12, 14987 (2021). https://doi.org/10.1039/D1SC02574K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. T. Zhou, D. Huang, and A. Caflisch, Curr. Top. Med. Chem. 10, 33 (2010). https://doi.org/10.2174/156802610790232242

    Article  CAS  PubMed  Google Scholar 

  28. S. V. Lushchekina, A. V. Nemukhin, I. V. Polyakov, et al., Russ. J. Phys. Chem. B 16, 103 (2022).

    Article  CAS  Google Scholar 

  29. R. Sayyadikord Abadi, A. Fallah Shojaei, F. Eslahi Tatafei, and O. Alizadeh, Russ. J. Phys. Chem. B 16, 127 (2022).

    Article  CAS  Google Scholar 

  30. S. Kaviani, S. Shahab, M. Sheikhi, and M. Ahmadianarog, J. Mol. Struct. 1176, 901 (2019).

    Article  CAS  Google Scholar 

  31. M. Sheikhi, Y. Ahmadi, S. Kaviani, and S. Shahab, Struct. Chem. 32, 1181 (2021).

    Article  CAS  Google Scholar 

  32. L. A. Wasserman, A. A. Papakhin, A. V. Krivandin, et al., Russ. J. Phys. Chem. B 16, 141 (2022).

    Article  CAS  Google Scholar 

  33. S. Sharifi and M. Khaleghian, Russ. J. Phys. Chem. B 16, 175 (2022).

    Article  Google Scholar 

  34. M. Sheikhi, S. Shahab, R. Alnajjar, and M. Ahmadianarog, J. Clust. Sci. 30, 83 (2019).

    CAS  Google Scholar 

  35. M. Sheikhi, S. Shahab, M. Khaleghian, et al., Curr. Mol. Med. 19, 473–486 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. S. Kaviani, M. Izadyar, M. Khavani, and M. R. Housaindokht, J. Mol. Liq. 317, 113933 (2020).

    Article  CAS  Google Scholar 

  37. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford, 2010).

    Google Scholar 

  38. M. E. Casida and D. R. Salahub, J. Chem. Phys. 113, 8918 (2000).

    Article  CAS  Google Scholar 

  39. R. F. W. Bader, Chem. Rev. 91, 893 (1991).

    Article  CAS  Google Scholar 

  40. S. Wojtulewski and S. J. Grabowski, Chem. Phys Lett. 378, 388 (2003).

    Article  CAS  Google Scholar 

  41. M. Khavani, M. Izadyar, and M. R. Housaindokht, Sens. Actuators B Chem. 221, 1120 (2015).

    Article  CAS  Google Scholar 

  42. E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett. 285, 170 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Almodarresiyeh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almodarresiyeh, H.A., Shahab, S., Kaviani, S. et al. Synthesis, DFT, Spectroscopic Studies and Electronic Properties of Novel Arginine Derivatives. Russ. J. Phys. Chem. B 17, 12–26 (2023). https://doi.org/10.1134/S1990793123010165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123010165

Keywords:

Navigation