Skip to main content
Log in

Modeling the Time-Dependent O3 Uptake on a Methane Flame Soot Coating Under Conditions of Competitive O3/NO2 and O3/N2O5 Adsorption

  • CHEMICAL PHYSICS OF ATMOSPHERIC PHENOMENA
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The uptake of O3 (1 × 1012–5× 1013 cm−3) on a methane soot coating preliminarily exposed to N2O5, is studied using a flow reactor with a movable insert. Based on the dependence of the ozone uptake coefficient on the exposure time and O3 concentration, the uptake mechanism is established and a number of elementary parameters are obtained that describe the uptake process at arbitrary O3 concentrations. Based on the Langmuir representation of adsorption, a model description of the uptake on soot under conditions of the competitive adsorption of O3/NOx, where NOx = NO2 and N2O5, taking into account the multistage uptake process, is proposed. Based on the developed model and elementary parameters describing the uptake of O3, NO2, and N2O5 on a fresh soot surface, as well as the uptake of ozone on a surface pretreated with NO2 and N2O5, numerical estimates were made of the additional contributions to the ozone uptake for two real scenarios of the O3/NOx ratio. For an industrial region in winter, when the ozone concentration is minimal (10 ppb O3, 17 ppb NO2, and 4 ppb N2O5), the additional integral contribution to the uptake of O3 on the reaction products of NO2 with soot is 68%, and in the case of N2O5, it is 3.6%. For the same region in summer, at the maximum ozone concentration (36 ppb O3, 17 ppb NO2, and 4 ppb N2O5), the analogous contributions will be 20 and 1%, respectively. The reasons for this difference are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. E. E. McDuffie, D. L. Fibiger, W. P. Dubé, et al., J. Geophys. Res. Atmos. 123, 4345 (2018). https://doi.org/10.1002/2018JD028336

    Article  CAS  Google Scholar 

  2. I. K. Larin, Russian J. Phys. Chem. B 13 (3), 548 (2019). https://doi.org/10.1134/S1990793119030084

  3. I. K. Larin, A. E. Aloyan, and A. N. Ermakov, Russian J. Phys. Chem. B 15 (3), 577 (2021). https://doi.org/10.1134/S199079312103009X

  4. W. L. Chang, P. V. Bhave, S. S. Brown, et al., Aerosol Sci. Technol. 45, 665 (2011). https://doi.org/10.1080/02786826.2010.551672

    Article  CAS  Google Scholar 

  5. L. Jaeglé, V. Shah, J. A. Thornton, et al., J. Geophys. Res. Atmos. 123, 12368 (2018). https://doi.org/10.1029/2018JD029133

    Article  CAS  Google Scholar 

  6. R. A. Washenfelder, N. L. Wagner, W. P. Dubé, and S. S. Brown, Environ. Sci. Technol. 45, 2938 (2011). https://doi.org/10.1021/es10334u

    Article  CAS  PubMed  Google Scholar 

  7. Z. Liu, R. M. Doherty, O. Wild, et al., Atmos. Chem. Phys. 22, 1209 (2022). https://doi.org/10.5194/acp-22-1209-2022

    Article  CAS  Google Scholar 

  8. D. Roberts-Semple, F. Song, and Yu. Gao, Atmos. Pollut. Res. 3, 247 (2012). https://www.atmospolres.com.

    Article  CAS  Google Scholar 

  9. N. L. Wagner, T. P. Riedel, C. J. Young, et al., J. Geophys. Res. 118D, 9331 (2013). https://doi.org/10.1002/jgrd.50653

    Article  CAS  Google Scholar 

  10. A. Berner, S. Sidla, Z. Galambos, et al., J. Geophys. Res. Atmos. 101, 19559 (1996). https://doi.org/10.1029/95JD03425

    Article  CAS  Google Scholar 

  11. K. Pohl, M. Cantwell, P. Herckes, and R. Lohmann, Atmos. Chem. Phys. 14, 7431 (2014). https://doi.org/10.5194/acp-14-7431-2014,2014

    Article  Google Scholar 

  12. T. C. Bond, D. G. Streets, K. F. Yarber, et al., J. Geophys. Res. 109, D14203 (2004). https://doi.org/10.1029/2003JD003697

    Article  CAS  Google Scholar 

  13. R. Wang, S. Tao, H. Shen, et al., Environ. Sci. Technol. 48, 6780 (2014). https://doi.org/10.1021/es5021422

    Article  CAS  PubMed  Google Scholar 

  14. Z. Klimont, K. Kupiainen, C. Heyes, et al., Atmos. Chem. Phys. 17, 8681 (2017). https://doi.org/10.5194/acp-8681-2017

    Article  CAS  Google Scholar 

  15. J. B. Burkholder, S. P. Sander, J. P. D. Abbatt, et al., “Chemical kinetics and photochemical data for use in atmospheric studies, evaluation no. 19,” NASA JPL Publication 19-5, Pasadena (2019). http://jpldataeval.jpl.nasa.gov.

  16. S. Kamm, O. Möhler, K.-H. Naumann, et al., Atmos. Environ. 33, 4651 (1999).

    Article  CAS  Google Scholar 

  17. A. R. Chughtai, J. M. Kim, and D. M. Smith, J. Atmos. Chem. 45, 231 (2003). https://doi.org/10.1023/A:1024250505886

    Article  CAS  Google Scholar 

  18. V. V. Zelenov and E. V. Aparina, Russian J. Phys. Chem. B 15 (3), 547 (2021). https://doi.org/10.1134/S1990793121030143

  19. V. V. Zelenov and E. V. Aparina, Russian J. Phys. Chem. B 15 (5), 919 (2021). https://doi.org/10.1134/S199079312050225

  20. V. V. Zelenov and E. V. Aparina, Russian J. Phys. Chem. B 16 (6), 1182 (2022). https://doi.org/10.1134/S1990793122060239

  21. F. Karagulian and M. J. Rossi, J. Phys. Chem. A 111, 1914 (2007). https://doi.org/10.1021/jp0670891

    Article  CAS  PubMed  Google Scholar 

  22. T. Moise and Y. Rudich, J. Geophys. Res. 105D, 14667 (2000). doi 0148-0227/00/2000JD900071

  23. M. Ammann, U. Pöschl, and Y. Rudich, Phys. Chem. Chem. Phys. 5, 351 (2003). https://doi.org/10.1039/b208708a

    Article  CAS  Google Scholar 

  24. U. Pöschl, Y. Rudich, and M. Ammann, Atmos. Chem. Phys. 7, 5989 (2007). https://www.atmos-chemphys.net/7/5989/2007/.

    Article  Google Scholar 

Download references

Funding

This study was performed as part of the state task FFZE-2022-0008 (registration no. 1021051302551-2-1.3.1; 1.4.7; 1.6.19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zelenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenov, V.V., Aparina, E.V. Modeling the Time-Dependent O3 Uptake on a Methane Flame Soot Coating Under Conditions of Competitive O3/NO2 and O3/N2O5 Adsorption. Russ. J. Phys. Chem. B 17, 234–243 (2023). https://doi.org/10.1134/S1990793123010141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123010141

Keywords:

Navigation