Skip to main content
Log in

Micronization of Levofloxacin Hydrochloride by the Supercritical Antisolvent Precipitation Method from Single-Phase and Two-Phase CO2–Acetone Mixtures

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The effect of the pressure and concentration of a micronized substance in a solution on the size and morphology of levofloxacin hydrochloride particles obtained using supercritical antisolvent (SAS) precipitation is investigated. It is shown that the crystallization of levofloxacin from the two-phase CO2–acetone–levofloxacin system leads to the production of particles with a bimodal size distribution. An increase in pressure leads to a change in the precipitation regime, and as a result, the crystallization of smaller particles. Vapour–liquid equilibrium curves are obtained for the CO2–acetone–levofloxacin hydrochloride system at a temperature of 40°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. P. Franco and I. De Marco, Processes 8 (8), 938 (2020).

    Article  CAS  Google Scholar 

  2. A. O’Sullivan, K. M. Ryan, and L. Padrela, J. Supercrit. Fluids 187, 105645 (2022).

    Article  Google Scholar 

  3. A. O’Sullivan, B. Long, V. Verma, K. M. Ryan, and L. Padrela, Int. J. Pharmaceutics 621, 121798 (2022).

    Article  Google Scholar 

  4. P. Franco and I. De Marco, J. Supercrit. Fluids 171, 105201 (2021).

    Article  CAS  Google Scholar 

  5. S. Clercq, A. Mouahid, P. Gerard, and E. Badens, J. Supercrit. Fluids 141, 29 (2018).

    Article  CAS  Google Scholar 

  6. M. M. Ribas, G. S. B. Sakata, A. E. Santos, C. Dal Magro, G. P. S. Aguiar, M. Lanza, and J. V. Oliveira, J. Supercrit. Fluids 152, 104564 (2019).

    Article  CAS  Google Scholar 

  7. A. M. Vorobei, O. I. Pokrovskiy, K. B. Ustinovich, L. I. Krotova, O. O. Parenago, and V. V. Lunin, Russ. J. Phys. Chem. B 10 (7), 1072 (2016).

    Article  CAS  Google Scholar 

  8. V. N. Bagratashvili, A. M. Egorov, L. I. Krotova, A. V. Mironov, V. Ya. Panchenko, O. O. Parenago, V. K. Popov, I. A. Revelsky, P. S. Timashev, and S. I. Tsypina, Russ. J. Phys. Chem. B 6 (7), 804.

  9. A. M. Vorobei, O. I. Pokrovskiy, K. B. Ustinovich, O. O. Parenago, V. V. Lunin, and A. G. Miroshnichenko, Russ. J. Phys. Chem. B 12 (8), 1240 (2012).

    Article  Google Scholar 

  10. S. M. Abuzar, S.-M. Hyun, J.-H. Kim, H. J. Park, M.-S. Kim, J.-S. Park, and S.-J. Hwang, Int. J. Pharmaceutics 538 (1), 1 (2018).

    Article  CAS  Google Scholar 

  11. I. Sh. Khabriev and V. F. Khairutdinov, Z. I. Zaripov, F. M. Gumerov, V. A. Petrov, N. V. Kuznetsova, and R. M. Khuzakhanov, Russ. J. Phys. Chem. B 11 (8), 1231 (2017).

    Article  CAS  Google Scholar 

  12. A. M. Vorobei and O. O. Parenago, Russ. J. Phys. Chem. 95 (3), 407 (2021).

    Article  CAS  Google Scholar 

  13. E. S. Alekseev, A. Yu. Alentiev, A. S. Belova, et al., Russ. Chem. Rev. 89 (12), 1337 (2020).

    Article  CAS  Google Scholar 

  14. N. Esfandiari, J. Supercrit. Fluids 100, 129 (2015).

    Article  CAS  Google Scholar 

  15. S. Palakodaty and P. York, Pharm. Res. 16 (7), 976 (1999).

    Article  CAS  Google Scholar 

  16. R. Campardelli, E. Reverchon, and I. De Marco, J. Supercrit. Fluids 130, 273 (2017).

    Article  CAS  Google Scholar 

  17. E. Reverchon and I. De Marco, Chem. Eng. J. 169 (1), 358 (2011).

    Article  CAS  Google Scholar 

  18. E. Reverchon, G. Caputo, and I. De Marco, Ind. Eng. Chem. Res. 42 (25), 6406 (2003).

    Article  CAS  Google Scholar 

  19. E. Reverchon, I. De Marco, R. Adami, and G. Caputo, J. Supercrit. Fluids 44 (1), 98 (2008).

    Article  CAS  Google Scholar 

  20. E. Reverchon, R. Adami, G. Caputo, and I. De Marco, J. Supercrit. Fluids 47 (1), 70 (2008).

    Article  CAS  Google Scholar 

  21. E. Reverchon, I. De Marco, and E. Torino, J. Supercrit. Fluids 43 (1), 126 (2007).

    Article  CAS  Google Scholar 

  22. E. V. Kudryashova, I. M. Deygen, K. V. Sukhoverkov, L. Y. Filatova, N. L. Klyachko, A. M. Vorobei, O. I. Pokrovskiy, K. B. Ustinovich, O. O. Parenago, E. N. Antonov, A. G. Dunaev, L. I. Krotova, V. K. Popov, and A. M. Egorov, Russ. J. Phys. Chem. B 10 (8), 1201 (2016).

    Article  CAS  Google Scholar 

  23. C.-M. Hsieh and J. Vrabec, J. Supercrit. Fluids 100, 160 (2015).

    Article  CAS  Google Scholar 

  24. S. S. Dukhin, Y. Shen, R. Dave, et al., Colloids Surf. Physicochem. Eng. Aspects 261 (1), 163 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The scanning electron microscopy and X-ray diffraction measurements were performed using shared experimental facilities supported by IGIC RAS state assignment.

Funding

This study was financially supported by Russian Science Foundation, grant no. 22-23-00566.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Vorobei, A. G. Fedorovskiy, M. O. Kostenko, Ya. I. Zuev or O. O. Parenago.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobei, A.M., Fedorovskiy, A.G., Kostenko, M.O. et al. Micronization of Levofloxacin Hydrochloride by the Supercritical Antisolvent Precipitation Method from Single-Phase and Two-Phase CO2–Acetone Mixtures. Russ. J. Phys. Chem. B 16, 1416–1421 (2022). https://doi.org/10.1134/S1990793122080152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122080152

Navigation