Skip to main content
Log in

Conversion of Pyrrole in Supercritical Water and Water–Oxygen Fluid

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The conversion of pyrrole in supercritical water and water–oxygen fluid in continuous flow (673–823 K, 25 MPa, excess of oxygen ≤2.46, residence time 18–148 s) is studied. It is found that, in the absence of O2, an increase in temperature leads to an increase in the pyrrole conversion and the yield of gaseous products (H2, CH4, CO, and CO2). When pyrrole is oxidized in a water–oxygen fluid, the excess oxygen has a greater effect on the degree of removal of organic carbon than temperature. The products obtained at 723 and 773 K contain a solid substance, the IR spectrum of which corresponds to polypyrrole. In general, the oxidation of pyrrole in a water–oxygen fluid occurs by the mechanism of parallel and consecutive reactions, including the formation and oxidation of ring-opening products, as well as the formation and oxidation of pyrrole polymerization products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Wang, D. Xu, Y. Guo, X. Tang, Y. Wang, J. Zhang, H. Ma, L. Qian, and Y. Li, in Supercritical Water Processing Technologies for Environment, Energy and Nanomaterial Applications (2019), p. 109. https://doi.org/10.1007/978-981-13-9326-6_4

    Book  Google Scholar 

  2. Z. Chen, X. Zhang, S. Li, and L. Gao, Energy 134, 933 (2017). https://doi.org/10.1016/j.energy.2017.06.027

    Article  CAS  Google Scholar 

  3. A. A. Vostrikov and O. N. Fedyaeva, in IX Scientific and Engineering Conference on Supercritical Fluids: Fundamentals, Technologies, Innovations, Sochi, Russia, October 9–14, 2017, p. 226.

  4. O. N. Fedyaeva, V. R. Antipenko, and A. A. Vostrikov, J. Supercit. Fluids 88, 105 (2014). https://doi.org/10.1016/j.supflu.2014.01.016

    Article  CAS  Google Scholar 

  5. O. N. Fedyaeva, V. R. Antipenko, D. Y. Dubov, T. V. Kruglyakova, and A. A. Vostrikov, J. Supercit. Fluids 109, 157 (2016). https://doi.org/10.1016/j.supflu.2015.11.020

    Article  CAS  Google Scholar 

  6. O. N. Fedyaeva and A. A. Vostrikov, Russ. J. Phys. Chem. B 14, 1116 (2020). https://doi.org/10.1134/S1990793120070076

    Article  CAS  Google Scholar 

  7. O. N. Fedyaeva, D. O. Artamonov, and A. A. Vostrikov, Combust. Flame 210, 183 (2019). https://doi.org/10.1016/j.combustflame.2019.08.009

    Article  CAS  Google Scholar 

  8. O. N. Fedyaeva, D. O. Artamonov, and A. A. Vostrikov, J. Eng. Thermophys. 30 (2), 184 (2021). https://doi.org/10.1134/S1810232821020028

    Article  CAS  Google Scholar 

  9. M. Pelucchi, S. Arunthanayothin, Y. Song, O. Herbinet, A. Stagni, H. Carstensen, T. Faravelli, and F. Battin-Leclerc, Energy Fuels 35, 7265 (2021). https://doi.org/10.1021/acs.energyfuels.0c03874

    Article  CAS  Google Scholar 

  10. A. R. Katritzky, F. J. Luxem, R. Murugan, J. V. Greenhill, and M. Siskin, Energy Fuels 6, 450 (1992). https://doi.org/10.1021/ef00034a014

    Article  CAS  Google Scholar 

  11. A. R. Katritzky, P. A. Shipkova, S. M. Allin, R. A., Barcock, M. Siskin, and W. N. Olmstead, Energy Fuels 9, 580 (1995). https://doi.org/10.1021/ef00052a003

    Article  CAS  Google Scholar 

  12. W. Wahyudiono, Y. Matsunaga, S. Machmudah, M. Sasaki, and M. Goto, J. Chem. Chem. Eng. 6, 897 (2012). https://doi.org/10.17265/1934-7375/2012.10.005

    Article  CAS  Google Scholar 

  13. N. Crain, S. Tebbal, L. Li, and E. F. Gloyna, Ind. Eng. Chem. Res. 32, 2259 (1993). https://doi.org/ ie00022a010

  14. B. Yang and Z. Shen, J. Environ. Eng. 145, 04019012 (2019). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001506

    Article  Google Scholar 

  15. B. Yang, Z. Shen, Z. Cheng, and W. Ji, Chemosphere 188, 642 (2017). https://doi.org/10.1016/j.chemosphere.2017.08.069

    Article  CAS  Google Scholar 

  16. B. Yang, Z. Cheng, T. Yuan, X. Gao, Y. Tan, Y. Ma, and Z. Shen, J. Taiwan Inst. Chem. Eng. 93, 31 (2018). https://doi.org/10.1016/j.jtice.2018.07.029

    Article  CAS  Google Scholar 

  17. Z. Cheng, B. Yang, Q. Chen, X. Gao, Y. Tan, T. Yuan, and Z. Shen, Chem. Eng. J. 354, 12 (2018). https://doi.org/10.1016/j.cej.2018.07.169

    Article  CAS  Google Scholar 

  18. J. Li, S. Wang, Y. Li, Z. Jian, T. Xu, and Y. Zhang, Water Res. 185, 116222 (2020). https://doi.org/10.1016/j.watres.2020.116222

    Article  CAS  Google Scholar 

  19. E. W. Lemmon, M. O. McLinden, D. G. Freid, P. J. Linstrom, and W. G. Mallard, Thermophysical Properties of Fluid Systems. NIST Chemistry WebBook, NIST Standard Reference Database No 69 (Natl. Inst. Stand. Technol., Gaithersburg MD, 2021). http://webbook.nist.gov/chemistry/fluid/.

  20. O. N. Fedyaeva, A. A. Vostrikov, A. V. Shishkin, M. Y. Sokol, L. S. Borisova, and V. A. Kashirtsev, Russ. J. Phys. Chem. B 6, 793 (2012). https://doi.org/10.1134/S1990793111080069

    Article  CAS  Google Scholar 

  21. S. A. Al-Tamrah, Anal. Lett. 22 (2), 387 (1989). https://doi.org/10.1080/00032718908052348

    Article  CAS  Google Scholar 

  22. S. Guo, D. Xu, N. Wei, Y. Wang, G. Chen, and S. Wang, Ind. Eng. Chem. Res. 59, 10278 (2020). https://doi.org/10.1021/acs.iecr.0c01394

    Article  CAS  Google Scholar 

  23. N. Zhang, X. Feng, D. Rao, X. Deng, L. Cai, B. Qui, R. Long, Y. Xiong, Y. Lu, and Y. Chai, Nat. Commun. 11, 4066 (2020). https://doi.org/10.1038/s41467-020-17934-7

    Article  CAS  Google Scholar 

  24. D. V. Andreeva, Z. Pientka, L. Brozova, M. Bleha, G. A. Polovskaya, and G. K. Elyashevich, Thin Solid Films 406, 54 (2002). https://doi.org/10.1016/S0040-6090(01)01719-9

    Article  CAS  Google Scholar 

  25. Y. Tan and K. Ghandi, Synth. Met. 175, 183 (2013). https://doi.org/10.1016/j.synthmet.2013.05.014

    Article  CAS  Google Scholar 

  26. M. Lumbreras, M. U. Alzueta, A. Millera, and R. Bilbao, Combust. Sci. Technol. 172, 123 (2001). https://doi.org/10.1080/00102200108945397

    Article  CAS  Google Scholar 

  27. A. Kausaite-Minkstimiene, V. Mazeiko, A. Ramanaviciene, and A. Ramanavicius, Colloids Surf., A 483, 224 (2015). https://doi.org/10.1016/j.colsurfa.2015.05.008

    Article  CAS  Google Scholar 

  28. A. A. Jatrakar, J. B. Yadav, S. V. Kamat, V. S. Patil, D. B. Mahadik, H. C. Barshilia, V. Puri, and R. K. Puri, J. Phys. Chem. Solids 80, 78 (2015). https://doi.org/10.1016/j.jpcs.2015.01.004

    Article  CAS  Google Scholar 

  29. N. Wei, D. Xu, B. Hao, S. Guo, Y. Guo, and S. Wang, Water Res. 190, 116634 (2021). https://doi.org/10.1016/j.watres.2020.116634

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank M.Ya. Sokol and V.E. Tolstokorov for their help in performing the experiments and D.O. Artamonov for processing the mass spectra of the volatile products (all from the Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia).

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-29-06005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Fedyaeva.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedyaeva, O.N., Vostrikov, A.A. Conversion of Pyrrole in Supercritical Water and Water–Oxygen Fluid. Russ. J. Phys. Chem. B 16, 1409–1415 (2022). https://doi.org/10.1134/S1990793122080140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122080140

Keywords:

Navigation