Skip to main content
Log in

On the Capabilities of Optical Diagnostics Methods to Monitor the State of Supercritical Fluids near the Widom Line

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A fundamental problem of the optical diagnostics of the supercritical fluid (SF) structure and its statistical properties in the vicinity of the Widom line is considered. The solution of this problem requires approaches that allow us to bring the peculiarities of optical measurement data in line with the peculiarities of the state of the fluid. The results obtained in the past ten years on the problem of the Widom lines in nonpolar supercritical media are briefly reviewed. Particular attention is given to the optical measurement data in the Widom region, namely, measurements of the nonlinear contribution to the refractive index and measurements of the Rayleigh light scattering intensity. It is demonstrated that these data can serve as a base for mutually complementary methods for the optical diagnostics of an SF state. As an example, the data on small-angle light scattering by SF-CO2 were used to restore its pair correlation function, the temperature dependence of which fundamentally differs from that of the Ornstein–Zernike pair correlation function. It is noted that the method based on measuring the Rayleigh scattering intensity is general in nature and can be applied to any random unordered molecular media, including the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Xu, P. Kumar, S. V. Buldyrev, S. H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Proc. Natl. Acad. Sci. U. S. A. 102, 16558 (2005).

    Article  CAS  Google Scholar 

  2. B. Widom, J. Chem. Phys. 43, 3898 (1965).

    Article  Google Scholar 

  3. H. W. Habgood and W. G. Schneider, Can. J. Chem. 32, 98 (1954).

    Article  CAS  Google Scholar 

  4. I. A. Kvasnikov, Thermodynamics and Statistical Physics, Vol. 1: Thermodynamics (URSS, Moscow, 2002) [in Russian].

  5. A. Chu, E. J. Schoenes, and M. E. Fisher, Phys. Rev. 185, 219 (1969).

    Article  CAS  Google Scholar 

  6. D. Yu. Ivanov, Critical Behavior of Non-Ideal Systems (Wiley, New York, 2008).

    Book  Google Scholar 

  7. G. Brunner, Ann. Rev. Chem. Biomol. Eng. 1, 321 (2010).

    Article  CAS  Google Scholar 

  8. H. Behnejad, J. V. Sengers, and M. A. Anisimov, in Applied Thermodynamics of Fluids, Ed. by A. R. H. Goodwin, J. V. Sengers, and C. J. Peters (RSC, London, 2010), Chap. 10.

    Google Scholar 

  9. H.-O. May and P. Mausbach, Phys. Rev. E 85, 031201 (2012).

    Article  Google Scholar 

  10. G. Ruppeiner, A. Sahay, T. Sarkar, and G. Sengupta, Phys. Rev. E 86, 052103 (2012).

    Article  CAS  Google Scholar 

  11. P. F. McMillan and H. E. Stanley, Nat. Phys. 6, 479480 (2010).

    Article  Google Scholar 

  12. S. Artemenko, P. Krijgsman, and V. Mazur, J. Mol. Liq. 238, 122 (2017).

    Article  CAS  Google Scholar 

  13. Y. Gorbaty and G. V. Bondarenko, J. Mol. Liq. 239, 5 (2017).

    Article  CAS  Google Scholar 

  14. A. G. Kalinichev, J. Mol. Liq. 241, 1038 (2017).

    Article  CAS  Google Scholar 

  15. G. G. Simeoni, T. Bryk, F. A. Gorelli, M. Krisch, G. Ruocco, M. Santoro, and T. Scopigno, Nat. Phys. 6, 503 (2010).

    Article  CAS  Google Scholar 

  16. F. A. Gorelli, T. Bryk, M. Krisch, G. Ruocco, M. Santoro, and T. Scopigno, Sci. Rep. 3, 1203 (2013).

    Article  CAS  Google Scholar 

  17. D. T. Banuti, J. Supercrit. Fluids 98, 12 (2015).

    Article  CAS  Google Scholar 

  18. D. T. Banuti, M. Raju, and M. Ihme, Phys. Rev. E 95, 052120 (2017).

    Article  CAS  Google Scholar 

  19. T. J. Yoon, M. Y. Ha, W. B. Lee, and Y.-W. Lee, J. Chem. Phys. 149, 014502 (2018).

    Article  Google Scholar 

  20. M. Y. Ha, T. J. Yoon, T. Tlusty, Y. Jho, and W. B. Lee, J. Phys. Chem. Lett. 9, 1734 (2018).

    Article  CAS  Google Scholar 

  21. M. Y. Ha, T. J. Yoon, T. Tlusty, Y. Jho, and W. B. Lee, J. Phys. Chem. Lett. 11, 451 (2020).

    Article  CAS  Google Scholar 

  22. J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017).

    Article  CAS  Google Scholar 

  23. D. M. Heyes and L. V. Woodcock, Fluid Phase Equilib. 356, 301 (2013).

    Article  CAS  Google Scholar 

  24. J. L. Finney and L. V. Woodcock, J. Phys.: Condens. Matter 26, 463102 (2014).

    Google Scholar 

  25. D. Fomin, V. N. Ryzhov, E. N. Tsiok, V. V. Brazhkin, and K. Trachenko, Phys. Rev. E 91, 022111 (2015).

    Article  Google Scholar 

  26. https://webbook.nist.gov/chemistry.

  27. B. Sedunov, Am. J. Anal. Chem. 3, 899 (2012).

    Article  Google Scholar 

  28. A. I. Abdulagatov and P. V. Skripov, Sverkhkrit. Fluidy: Teor. Prakt. 15 (1), 33 (2020).

    Google Scholar 

  29. E. Mareev, V. Aleshkevich, F. Potemkin, V. Bagratashvili, N. Minaev, and V. Gordienko, Opt. Express 26, 13229 (2018).

    Article  CAS  Google Scholar 

  30. E. I. Mareev, V. A. Aleshkevich, F. V. Potemkin, N. V. Minaev, and V. M. Gordienko, Sverkhkrit. Fluidy: Teor. Prakt. 14 (1), 84 (2019).

    Google Scholar 

  31. J. J. Potoff and J. I. Siepmann, AIChE J. 47, 1676 (2001).

    Article  CAS  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Pergamon, Oxford, 1969).

  33. V. N. Kondratiev, E. E. Nikitin, A. I. Reznikov, and S. Ya. Umanskii, Thermal Bimolecular Reactions in Gases (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  34. I. A. Kvasnikov, Thermodynamics and Statistical Physics, Vol. 3: The Theory of Non-Equilibrium Systems (URSS, Moscow, 2003) [in Russian].

  35. L. S. Ornstein and F. Zernike, Proc. Sec. Sci. Kon. Acad. Wetensch. (Amsterdam) 17, 793 (1914).

    Google Scholar 

  36. L. S. Ornstein and F. Zernike, Phys. Zs. 19, 134 (1918).

    Google Scholar 

  37. I. A. Kvasnikov, Thermodynamics and Statistical Physics, Vol. 2: The Theory of Equilibrium Systems (URSS, Moscow, 2010) [in Russian].

  38. K. Nishikawa, I. Tanaka, and Y. Amemiya, J. Phys. Chem. 100, 418 (1996).

    Article  CAS  Google Scholar 

  39. D. A. Zimnyakov, A. P. Sviridov, A. M. Konovalova, and V. N. Bagratashvili, Sverkhkrit. Fluidy: Teor. Prakt., No. 3, 30 (2008).

  40. Yu. A. Chaikina and S. Ya. Umanskii, Sverkhkrit. Fluidy: Teor. Prakt. 16 (1), 77 (2021).

    Google Scholar 

  41. Yu. A. Chaikina and S. Ya. Umanskii, Chem. Phys. 536, 110795 (2020).

    Article  CAS  Google Scholar 

  42. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2: Multiple Scattering, Turbulence, Rough Surfaces, and Remote Sensing (Academic, New York, 1978).

  43. D. Ivanenko and A. Sokolov, Classical Theory of the Field (Gos. Izdat. Tekh.-Teor. Liter., Moscow, 1949) [in Russian].

    Google Scholar 

  44. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, 1992).

    Google Scholar 

  45. V. A. Korshunov, Bull. Russ. Acad. Sci.: Phys. 43, 618 (2007).

    Google Scholar 

  46. O. P. Borchevkina, Y. A. Kurdyaeva, Y. A. Dyakov, I. V. Karpov, G. V. Golubkov, P. K. Wang, and M. G. Golubkov, Atmosfera 12, 1384 (2021).

    Google Scholar 

  47. G. V. Golubkov, S. O. Adamson, O. P. Borchevkina, P. K. Wang, Y. A. Dyakov, I. I. Efishov, I. V. Karpov, Y. A. Kurdyaeva, E. E. Lukhovitskaya, O. A. Olkhov, N. Y. Tepenitsina, S. Y. Umanskii, I. I. Shagimuratov, V. L. Shapovalov, G. A. Yakimova, and M. G. Golubkov, Russ. J. Phys. Chem. B 16 (3) (2022, in press).

  48. A. I. Abdulagatov and P. V. Skripov, Sverkhkrit. Fluidy: Teor. Prakt. 15 (4), 3 (2020).

    Google Scholar 

  49. D. A. Zimnyakov, D. A. Alonova, E. V. Ushakova, O. V. Ushakova, V. K. Popov, N. V. Minaev, and S. A. Minaeva, Sverkhkrit. Fluidy: Teor. Prakt. 16 (2), 99 (2021).

    Google Scholar 

  50. G. Guevara-Carrion, S. Ancherbak, A. Mialdun, J. Vrabec, and V. Shevtsova, Sci. Rep. 9, 8466 (2019).

    Article  Google Scholar 

Download references

Funding

This study was carried out as part of a state task of the Russian Ministry of Science and Higher Education (registration no. 1021051201992–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Chaikina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lundin, A.A., Chaikina, Y.A., Shushin, A.I. et al. On the Capabilities of Optical Diagnostics Methods to Monitor the State of Supercritical Fluids near the Widom Line. Russ. J. Phys. Chem. B 16, 1361–1370 (2022). https://doi.org/10.1134/S1990793122080115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122080115

Navigation