Skip to main content
Log in

Processing Watered Toxic Waste of Pig and Poultry Farming in Sub- and Supercritical Water (Review)

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The treatment of pig and poultry farm waste (hazard class III waste) with water at the parameters above its critical point (T > 374°C, P > 22.1 MPa) is considered as one of the promising methods of processing them in an environmentally friendly way. The works on liquefaction, carbonization, and gasification of pig manure and chicken droppings in sub- and supercritical water are analyzed. The problems related to the practical implementation of waste processing in supercritical water-oxygen fluid are discussed, which primarily include the high cost of compressed oxygen, the inhomogeneous composition of wastes and the presence of solids in them, precipitation of salts, and corrosion of structural materials. It is shown that, due to the high water content in the wastes and the low calorific capacity of the organic matter contained in them, the practical implementation of such treatment under autothermal conditions requires the use of additional fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. EMISS State Statistics. The Number of Livestock and Poultry in Farms of All Categories. https://fedstat.ru/indicator/31325.

  2. F. Girotto and R. Cossi, Sustain. Agric. Rev. 22, 1 (2017).

    Article  Google Scholar 

  3. Order of Rosprirodnadzor dated 22.05.2017 No. 242 on Approval of the Federal Waste Classification Catalog. https://rpn.gov.ru/documents/legal/rpn/.

  4. D. Liu, T. Nyord, L. Rong, and A. Feilberg, Sci. Total Environ. 639, 1079 (2018).

    Article  CAS  Google Scholar 

  5. S. Trabue, K. Scoggin, J. Tyndall, T. Sauer, G. Hernandez-Ramirez, R. Pfeiffer, and J. Hatfield, J. Environ. Manage. 233, 12 (2019).

    Article  CAS  Google Scholar 

  6. S. L. Trabue, B. J. Kerr, and K. D. Scoggin, Sci. Total Environ. 689, 1115 (2019).

    Article  CAS  Google Scholar 

  7. S. L. Trabue, B. J. Kerr, K. D. Scoggin, D. Andersen, and M. van Weelden, Sci. Total Environ. 755, 142528 (2021).

    Article  CAS  Google Scholar 

  8. K. J. Donham, J. Yeggy, and R. R. Dague, Biol. Wastes 24, 161 (1988).

    Article  CAS  Google Scholar 

  9. O. A. Cherednichenko, Mir Nauki, Kul’t. Obrazov., No. 6 (49), 276 (2014).

  10. T. Yanagida, T. Minowa, A. Nakamura, Y. Matsumura, and Y. Noda, J. Jpn. Inst. Energy 66, 731 (2007).

    Google Scholar 

  11. L. L. Nikiforov and L. A. Chilina, Myasn. Tekhnol., No. 5, 22 (2007).

  12. V. Kudryashov, Ptitseprom, No. 2, 64 (2017).

  13. N. Akiya and P. E. Savage, Chem. Rev. 102, 2725 (2002).

    Article  CAS  Google Scholar 

  14. A. A. Galkin and V. V. Lunin, Russ. Chem. Rev. 74, 21 (2005).

    Article  CAS  Google Scholar 

  15. A. Kruse and E. Dinjus, J. Supercrit. Fluids 39, 362 (2007).

    Article  CAS  Google Scholar 

  16. G. Brunner, J. Supercrit. Fluids 47, 373 (2009).

    Article  CAS  Google Scholar 

  17. O. N. Fedyaeva and A. A. Vostrikov, Russ. J. Phys. Chem. B 6, 844 (2012).

    Article  CAS  Google Scholar 

  18. T. Moriya and H. Enomoto, Polym. Degrad. Stab. 65, 373 (1999).

    Article  CAS  Google Scholar 

  19. A. A. Vostrikov, D. Y. Dubov, M. Y. Sokol, A. V. Shishkin, and O. N. Fedyaeva, J. Eng. Thermophys. 25, 55 (2016).

    Article  CAS  Google Scholar 

  20. E. W. Lemmon, M. O. McLinden, D. G. Freid, P. J. Linstrom, and W. G. Mallard, Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database No. 69 (NIST, Gaithersburg MD, 2021).

    Google Scholar 

  21. H.-J. Lee, J.-H. In, K.-Y. Hwang, and C.-H. Lee, Ind. Eng. Chem. Res. 43, 3223 (2004).

    Article  CAS  Google Scholar 

  22. B. Yang, Z. Cheng, T. Yuan, X. Gao, Y. Tan, Y. Ma, and Z. Shen, J. Taiwan Inst. Chem. Eng. 93, 31 (2018).

    CAS  Google Scholar 

  23. O. N. Fedyaeva, D. O. Artamonov, and A. A. Vostrikov, Combust. Flame 210, 183 (2019).

    Article  CAS  Google Scholar 

  24. P. Muthukumaran and R. B. Gupta, Ind. Eng. Chem. Res. 39, 4555 (2000).

    Article  CAS  Google Scholar 

  25. O. N. Fedyaeva, S. V. Morozov, and A. A. Vostrikov, Chemosphere 283, 131239 (2021).

    Article  CAS  Google Scholar 

  26. B. Veriansyah, J.-D. Kim, and J.-C. Lee, J. Hazard. Mater. 147, 8 (2007).

    Article  CAS  Google Scholar 

  27. O. N. Fedyaeva, A. V. Shishkin, and A. A. Vostrikov, ACS Omega 6, 13134 (2021).

    Article  CAS  Google Scholar 

  28. Y. Bowen, C. Zhiwen, and S. Zhemin, J. Taiwan Inst. Chem. Eng. 95, 40 (2019).

    Google Scholar 

  29. M. Hodes, P. A. Marrone, G. T. Hong, K. A. Smith, and J. W. Tester, J. Supercrit. Fluids 29, 265 (2004).

    Article  CAS  Google Scholar 

  30. T. Voisin, A. Erriguibele, D. Ballengien, D. Mateous, A. Kunegel, F. Cansell, and C. Aymonier, J. Supercrit. Fluids 120, 18 (2017).

    Article  CAS  Google Scholar 

  31. X. Ding, J. D. Sheehan, T. Zhang, Z. Shen, Y. Wang, Z. Jiang, and T. Fang, J. Supercrit. Fluids 181, 105488 (2022).

    Article  CAS  Google Scholar 

  32. O. N. Fedyaeva, A. A. Vostrikov, A. V. Shishkin, M. Y. Sokol, L. S. Borisova, and V. A. Kashirtsev, Russ. J. Phys. Chem. B 6, 793 (2012).

    Article  CAS  Google Scholar 

  33. A. A. Vostrikov and O. N. Fedyaeva, in Proceedings of the 9th Scientific and Engineering Conference on Supercritical Fluids: Fundamentals, Technologies, Innovations. Sochi, Russia, October 9–14, 2017, p. 226.

  34. X. Shen, G. Huang, H. Zengling, Z. Yang, and L. Han, Appl. Energy 160, 108 (2015).

    Article  CAS  Google Scholar 

  35. J. Xiong, Z. Pan, X. Xiao, H. Huang, F. Lai, J. Wang, and S. Chan, J. Anal. Appl. Pyrolys. 144, 104692 (2019).

    Article  CAS  Google Scholar 

  36. Q. Li, S. Zhang, M. Gholizadeh, X. Yuan, B. Sarkar, M. Vithanage, O. Masek, and Y. S. Ok, Sci. Total Environ. 786, 147381 (2021).

    Article  CAS  Google Scholar 

  37. K. Babaei, A. Bozorg, and A. Tavasoli, J. Anal. Appl. Pyrolysis 159, 105318 (2021).

    Article  CAS  Google Scholar 

  38. V. Blanes-Vidal, M. N. Hansen, A. P. S. Adamsen, A. Feilberg, S. O. Petersen, and B. B. Jensen, Atmosph. Environ. 43, 2997 (2009).

    Article  CAS  Google Scholar 

  39. A. Feilberg, D. Liu, A. P. S. Adamsen, M. N. Hansen, and E. N. Jonassen, Environ. Sci. Technol. 44, 5894 (2010).

    Article  CAS  Google Scholar 

  40. S. Traube, B. Kerr, and K. Scoggin, J. Environ. Qual. 45, 915 (2016).

    Article  Google Scholar 

  41. J.-G. Ni, W. P. Robarge, C. Xiao, and A. J. Heber, Chemosphere 89, 769 (2012).

    Article  CAS  Google Scholar 

  42. D. N. Miller and V. H. Varel, J. Anim. Sci. 81, 2131 (2003).

    Article  CAS  Google Scholar 

  43. C. van der Heyden, P. Demeyer, and E. I. P. Volcke, Biosyst. Eng. 134, 74 (2015).

    Article  Google Scholar 

  44. M. Dunlop, Dust and Odour Emissions from Meat Chicken Sheds (Australian Poultry CRC, Queensland, 2011).

    Google Scholar 

  45. K. Kalus, S. Opalinski, D. Maurer, S. Rice, J. A. Koziel, M. Koriusz, Z. Dodrazanski, R. Kolacz, and B. Gutarowska, Front. Environ. Sci. Eng. 11 (3), 7 (2017).

    Article  Google Scholar 

  46. M. I. Schnitzer, C. M. Monreal, G. Jandl, P. Leinweber, and P. B. Fransham, J. Environ. Sci. Health, Part B 42, 79 (2007).

    Article  CAS  Google Scholar 

  47. M. I. Schnitzer, C. M. Monreal, and G. Jandl, J. Environ. Sci. Health, Part B 43, 81 (2008).

    Article  CAS  Google Scholar 

  48. A. A. Szogi, M. B. Vanotti, and P. G. Hubt, J. Environ. Manage. 157, 1 (2015).

    Article  CAS  Google Scholar 

  49. U. Ekpo, A. B. Ross, M. A. Camargo-Valero, and L. A. Fletcher, Biores. Technol. 214, 637 (2016).

    Article  CAS  Google Scholar 

  50. C. Song, S. Shan, C. Yang, C. Zhang, X. Zhou, Q. Ma, K. Yrjala, H. Zhang, and Y. Cao, Sci. Total Environ. 720, 137423 (2020).

    Article  CAS  Google Scholar 

  51. S. Sushkova, T. Minkina, V. Chaplygin, D. Nevidomskaya, V. Rajput, T. Bauer, M. Mazarji, A. B. Bren, I. Popov, and M. Mazanko, J. Sci. Food Agric. 101, 1523 (2021).

    Article  CAS  Google Scholar 

  52. A. M. Sharara and S. S. Sadaka, Energies 11, 957 (2018).

    Article  Google Scholar 

  53. A. M. Sharara, D. Kim, S. S. Sadaka, and G. Thoma, Energies 12, 4081 (2019).

    Article  CAS  Google Scholar 

  54. A. Sitka, P. Szulc, D. Smykowski, and W. Jodkowski, Renew. Energy 175, 422 (2021).

    Article  CAS  Google Scholar 

  55. N. Wei, D. Xu, B. Hao, S. Guo, Y. Guo, and S. Wang, Water Res. 190, 116634 (2021).

    Article  CAS  Google Scholar 

  56. O. Yakaboylu, J. Harinck, K. G. Smit, and W. de Jong, Energies 8, 894 (2015).

    Article  Google Scholar 

  57. A. V. Bandura and S. N. Lvov, J. Phys. Chem. Ref. Data 35, 15 (2006).

    Article  CAS  Google Scholar 

  58. S. Xiu, A. Shahbazi, V. Shirley, and D. Cheng, J. Anal. Appl. Pyrolysis 88, 73 (2010).

    Article  CAS  Google Scholar 

  59. Y. Matsumura, Y. Suganuma, T. Ichikawa, W. Kim, Y. Nakashimada, and K. Nishida, ACS Omega 6, 23442 (2021).

    Article  CAS  Google Scholar 

  60. J. Lu, J. Watson, J. Zeng, H. Li, Z. Zhu, M. Wang, Y. Zhang, and Z. Liu, Proc. Safety Environ. Protect. 115, 108 (2018).

    Article  CAS  Google Scholar 

  61. Q. Lang, M. Chen, Y. Guo, Z. Liu, and C. Gai, J. Environ. Manage. 234, 97 (2019).

    Article  CAS  Google Scholar 

  62. S. Li, D. Zou, L. Li, L. Wu, F. Liu, X. Zeng, H. Wang, Y. Zhu, and Z. Xiao, Chemosphere 247, 125962 (2020).

    Article  CAS  Google Scholar 

  63. C. R. Correa and A. Kruse, J. Supercrit. Fluids 133, 573 (2018).

    Article  Google Scholar 

  64. J. A. Okolie, R. Rana, S. Nanda, A. K. Dalai, and J. A. Kozinski, Sustainable Energy Fuels 3, 578 (2019).

    CAS  Google Scholar 

  65. Y. Hu, M. Gong, X. Xing, H. Wang, Y. Zeng, and C. C. Xu, Renewable Sustainable Energy Rev. 118, 109529 (2020).

    Article  CAS  Google Scholar 

  66. W. Cao, C. Cao, L. Guo, H. Jin, M. Durgusch, D. Bernhardt, and X. Yao, Int. J. Hydrogen Energy 41, 22722 (2016).

    Article  CAS  Google Scholar 

  67. E. A. Yossef, E. Elbeshbishy, H. Hafez, G. Nakhla, and P. Charpentier, Int. J. Hydrogen Energy 35, 11756 (2010).

    Article  Google Scholar 

  68. M. S. Hussein, K. G. Burra, R. S. Amano, and A. K. Gupta, Fuel 189, 428 (2017).

    Article  CAS  Google Scholar 

  69. J. D. Patterson, M. Aydin, A. M. Crotwell, G. Petron, J. P. Severinghaus, and E. S. Saltzman, Geophys. Rev. Lett. 47, e2020GL087787 (2020).

  70. J. D. Patterson, M. Aydin, A. M. Crotwell, G. Petron, J. P. Severinghaus, P. B. Krummel, R. L. Landenfelds, and E. S. Salzman, Proc. Natl. Acad. Sci. U. S. A. 118 (36), e2103335118 (2021).

    Article  CAS  Google Scholar 

  71. T. K. Tromp, R. Shia, M. Allen, J. M. Eiler, and Y. L. Yung, Science (Washington, DC, U. S.) 300, 1740 (2003).

    Article  CAS  Google Scholar 

  72. S. Y. Bircan, R. Kanamori, Y. Hasegawa, K. Ohba, K. Matsumoto, and K. Kitagawa, Microchem. J. 99, 556 (2011).

    Article  Google Scholar 

  73. J. Yang, S. Wang, Y. Li, Y. Zhang, and D. Xu, J. Environ. Manage. 233, 131 (2019).

    Article  CAS  Google Scholar 

  74. Z. Chen, H. Chen, X. Liu, C. He, D. Yue, and Y. Xu, Chem. Eng. J. 343, 351 (2018).

    Article  CAS  Google Scholar 

  75. O. N. Fedyaeva, A. A. Vostrikov, D. O. Artamonov, A. V. Shishkin, and M. Y. Sokol, J. Eng. Thermophys. 30, 350 (2021).

    Article  CAS  Google Scholar 

  76. C. Ren, S. Guo, Y. Wang, S. Liu, M. Du, Y. Chen, and L. Guo, Chem. Eng. J. 427, 131938 (2022).

    Article  CAS  Google Scholar 

  77. S. Guo, C. Ren, Y. Wang, S. Liu, M. Du, Y. Chen, and L. Guo, Energy Conv. Manage. 248, 114809 (2021).

    Article  CAS  Google Scholar 

  78. O. N. Fedyaeva and A. A. Vostrikov, Russ. J. Phys. Chem. B 13, 1071 (2019).

    Article  CAS  Google Scholar 

  79. F. J. Gutierrez Ortiz, Energy Convers. Manage. X 14, 100164 (2022).

    CAS  Google Scholar 

  80. F. Zhang, Y. Li, Z. Liang, and T. Wu, Biomass Bioenergy 156, 106322 (2022).

    Article  CAS  Google Scholar 

  81. X. Tang, Y. Zheng, Z. Liao, Y. Wang, J. Yang, and J. Cai, Chem. Eng. Commun. 208, 1494 (2021).

    Article  CAS  Google Scholar 

  82. Y. Li, S. Wang, T. Xu, J. Li, Y. Zhang, T. Xu, and J. Yang, Process Safety Environ. Protect. 149, 385 (2021).

    Article  CAS  Google Scholar 

  83. M. D. Bermejo, A. Martin, J. P. S. Queiroz, P. Cabeza, F. Mato, and M. J. Cocero, in Near-critical and Supercritical Water and Their Applications for Biorefineries, Ed. by Z. Fang and C. Xu (Springer, Netherlands, 2014), p. 401.

    Google Scholar 

  84. F. Zhang, J. Chen, C. Su, S. Chen, Z. Chen, and Y. Ding, Process Saf. Environ. Protect. 131, 268 (2019).

    Article  CAS  Google Scholar 

  85. F. Zhang, J. Chen, C. Su, and C. Ma, Processes 6, 24 (2018).

    Article  CAS  Google Scholar 

  86. O. N. Fedyaeva and A. A. Vostrikov, J. Eng. Thermophys. 31, 11 (2022).

    Article  Google Scholar 

  87. D. H. Xu, S. Z. Wang, Y. M. Gong, Y. Guo, X. Y. Tang, and H. H. Ma, Chem. Eng. Res. Des. 88, 1515 (2010).

    Article  CAS  Google Scholar 

  88. O. N. Fedyaeva, A. A. Vostrikov, A. V. Shishkin, D. Y. Dubov, and M. Y. Sokol, J. Supercrit. Fluids 164, 104933 (2020).

    Article  CAS  Google Scholar 

  89. G. Lee, T. Nunoura, Y. Matsumura, and K. Yamamoto, J. Supercrit. Fluids 24, 239 (2002).

    Article  CAS  Google Scholar 

  90. D. Xu and S. Guo, Corrosion Characteristics, Mechanisms and Control Methods of Candidate Alloys in Sub- and Supercritical Water (Xi’an Jiaotong Univ. Press, 2022).

    Book  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (grant no. 22-19-20003, https://rscf.ru/en/ project/22-19-20003/) and the Government of Novosibirsk Region (grant no. R-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Fedyaeva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedyaeva, O.N., Vostrikov, A.A. Processing Watered Toxic Waste of Pig and Poultry Farming in Sub- and Supercritical Water (Review). Russ. J. Phys. Chem. B 16, 1371–1383 (2022). https://doi.org/10.1134/S1990793122080085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122080085

Navigation