Skip to main content
Log in

Ni and Ni–Co Catalysts Based on Mixed Ce–Zr Oxides Synthesized in Isopropanol Medium for Dry Reforming of Methane

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Single-phase Ce–Zr oxides with a fluorite structure were synthesized by the solvothermal method in an isopropanol medium. Synthesis was performed at the supercritical parameters of isopropanol. The effect of the synthesis parameters on the characteristics of the obtained materials (specific surface area, morphology, particle size, phase composition) was established. Ni (5 wt %) and Ni + Co (5 wt %) were deposited at a ratio of 1 : 1 by incipient wetness impregnation. The structure and properties of samples were characterized by physicochemical methods, such as X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and temperature-programmed reduction by hydrogen. The dependences of the conversion of reagents (CH4 and CO2), the yield of hydrogen, and the Ce/Zr ratio in the Dry reforming of methane (DRM) reaction on the composition of catalysts were studied. The effect of the composition of a deposited metallic component and the Ce/Zr ratio in the support on the catalytic properties and catalysts stability in the DRM reaction was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. W.-J. Jang, J.-O. Shim, H.-M. Kim, S.-Y. Yoo, and H.-S. Roh, Catal. Today 324, 15 (2019).

    Article  CAS  Google Scholar 

  2. M. Aresta and A. Dibenedetto, Dalton Trans., 2975 (2007).

  3. E. le Sache and T. R. Reina, Prog. Energy Combust. Sci. 89, 10970 (2022).

    Article  Google Scholar 

  4. D. Pakhare and J. Spivey, Chem. Soc. Rev. 43, 7813 (2014).

    Article  CAS  Google Scholar 

  5. I. V. Yentekakis and G. A. Panagiotopoulou, Appl. Catal. B: Environ. 296, 120210 (2021).

    Article  CAS  Google Scholar 

  6. A. Kambolis, H. Matralis, A. Trovarelli, and Ch. Papadopoulou, Appl. Catal. A: Gen. 377, 16 (2010).

    Article  CAS  Google Scholar 

  7. Y. Lyu, J. Jocz, R. Xu, E. Stavitski, and C. Sievers, ACS Catal. 10, 11235 (2020).

    Article  CAS  Google Scholar 

  8. M. A. Salaev, L. F. Liotta, and O. V. Vodyankina, Int. J. Hydrogen Energy 47, 4489 (2022).

    Article  Google Scholar 

  9. M. A. Vasiliades, P. Djinovi, L. F. Davlyatova, A. Pintar, and A. M. Efstathiou, Catal. Today 299, 201 (2018).

    Article  CAS  Google Scholar 

  10. Y. Khani, F. Bahadoran, Z. Shariatinia, M. Varmazyari, and N. Safari, Ceram. Int. 46, 25122 (2020).

    Article  CAS  Google Scholar 

  11. I. Luisetto, S. Tuti, C. Romano, M. Boaro, E. Di, J. Kopula, S. Senthil, and K. Selvakumar, J. CO2 Util. 30, 63 (2019).

  12. J. A. Montoya, E. Romero-Pascual, C. Gimon, P. del Angel, and A. Monzin, Catal. Today 63, 71 (2000).

    Article  CAS  Google Scholar 

  13. L. Wu, X. Xie, H. Ren, and X. Gao, Mater. Today: Proc. 42, 153 (2021).

    CAS  Google Scholar 

  14. S. Das, A. Jangam, S. Jayaprakash, S. Xi, K. Hidajat, K. Tomishige, and S. Kawi, Appl. Catal. B: Environ. 290, 119998 (2021).

    Article  CAS  Google Scholar 

  15. C. Pizzolitto, E. Pupulin, F. Menegazzo, E. Ghedini, A. di Michele, M. Mattarelli, G. Cruciani, and M. Signoretto, Int. J. Hydogen Energy 44, 28065 (2019).

    Article  CAS  Google Scholar 

  16. S. Bernal, J. J. Calvino, M. A. Cauqui, J. M. Gatica, C. Lopez Cartes, J. A. Perez Omil, and J. M. Pintado, Catal. Today 77, 385 (2003).

    Article  CAS  Google Scholar 

  17. C. M. Damaskinos, J. Zavasnik, P. Djinovic, and A. M. Efstathiou, Appl. Catal. B: Environ. 296, 120321 (2021).

    Article  CAS  Google Scholar 

  18. L. P. Teh, H. D. Setiabudi, S. N. Timmiati, M. A. A. Aziz, N. H. R. Annuar, and N. N. Ruslan, Chem. Eng. Sci. 242, 116606 (2021).

    Article  CAS  Google Scholar 

  19. J. Sasson Bitters, T. He, E. Nestler, S. D. Senanayake, J. G. Chen, and C. Zhang, J. Energy Chem. 68, 124 (2022).

    Article  CAS  Google Scholar 

  20. F. Sharifianjazi, A. Esmaeilkhanian, L. Bazli, S. Eskandarinezhad, S. Khaksar, P. Shafiee, M. Yusuf, B. Abdullah, P. Salahshour, and F. Sadeghi, Int. J. Hydrogen Energy (2021, in press).

  21. Z. Wu, B. Yang, S. Miao, W. Liu, J. Xie, S. Lee, M. J. Pellin, D. Xiao, D. Su, and D. Ma, ACS Catal. 9, 2693 (2019).

    Article  CAS  Google Scholar 

  22. S. Sengupta, K. Ray, and G. Deo, Int. J. Hydrogen Energy 39, 11462 (2014).

    Article  CAS  Google Scholar 

  23. X. Li, J. Ai, W. Li, and D. Li, Front. Chem. Eng. China 4, 476 (2010).

    Article  CAS  Google Scholar 

  24. W. Tu, M. Ghoussoub, C. V. Singh, and Y. H. C. Chin, J. Am. Chem. Soc. 139, 6928 (2017).

    Article  CAS  Google Scholar 

  25. D. P. F. Souza, C. L. de Silva, and V. R. Mastelaro, J. Eur. Ceram. Soc. 23, 273 (2003).

    Article  Google Scholar 

  26. T. G. Kuznetsova and V. A. Sadykov, Kinet. Catal. 49, 840 (2008).

    Article  CAS  Google Scholar 

  27. A. le Gal, S. Abanades, and G. Flamant, Energy Fuels 25, 4836 (2011).

    Article  CAS  Google Scholar 

  28. A. N. Kharlanov, A. O. Turakulova, A. V. Levanov, and V. V. Lunin, Russ. J. Phys. Chem. A 92, 678 (2018).

    Article  CAS  Google Scholar 

  29. F. Zamar, A. Trovarelli, C. de Leitenburg, and G. Dolcetti, Studies Surf. Sci. Catal. B 101, 1283 (1996).

    Article  CAS  Google Scholar 

  30. E. A. Trusova, A. A. Khrushcheva, and K. V. Vokhmintcev, J. Eur. Ceram. Soc. 32, 1977 (2012).

    Article  CAS  Google Scholar 

  31. A. Horváth, G. Stefler, O. Geszti, A. Kienneman, A. Pietraszek, and L. Guczi, Catal. Today 169, 102 (2011).

    Article  Google Scholar 

  32. I. Luisetto, S. Tuti, and E. di Bartolomeo, Int. J. Hydrogen Energy 37, 15992 (2012).

    Article  CAS  Google Scholar 

  33. M. Hirano and E. Kato, J. Ceram. Soc. Jpn. 104, 958 (1996).

    Article  CAS  Google Scholar 

  34. A. A. Galkin and V. V. Lunin, Russ. Chem. Rev. 74, 21 (2005).

    Article  CAS  Google Scholar 

  35. C. Slostowski, S. Marre, O. Babot, T. Toupance, and C. Aymonier, Langmuir 28, 16656 (2012).

    Article  CAS  Google Scholar 

  36. Y. Hakuta, H. Hayashi, and K. Arai, Curr. Opin. Solid State Mater. Sci. 7, 341 (2003).

    Article  CAS  Google Scholar 

  37. A. Cabanas, J. A. Darr, E. Lester, and M. Poliakoff, Chem. Commun., 901 (2000).

  38. J. A. Darr and M. Poliakoff, Chem. Rev. 99, 495 (1999).

    Article  CAS  Google Scholar 

  39. E. K. C. Pradeep, T. Habu, H. Tooriyama, M. Ohtani, and K. Kobiro, J. Supercrit. Fluids 97, 217 (2015).

    Article  CAS  Google Scholar 

  40. P. Wang, K. Ueno, H. Takigawa, and K. Kobiro, J. Supercrit. Fluids 78, 124 (2013).

    Article  Google Scholar 

  41. S. P. Gubin and E. Yu. Buslaeva, Russ. J. Phys. Chem. B 3, 1172 (2009).

    Article  Google Scholar 

  42. M. Y. Smirnova, S. N. Pavlova, T. A. Krieger, Y. N. Bespalko, V. I. Anikeev, Y. A. Chesalov, V. V. Kaichev, M. V. Mesetseva, and V. A. Sadykov, Russ. J. Phys. Chem. B 11, 1312 (2017).

    Article  CAS  Google Scholar 

  43. Y. Bespalko, E. Smal, M. Simonov, K. Valeev, and V. Fedorova, Energies 13, 3365 (2020).

    Article  CAS  Google Scholar 

  44. M. Simonov, Y. Bespalko, E. Smal, K. Valeev, V. Fedorova, T. Krieger, and V. Sadykov, Nanomaterials 10, 1 (2020).

    Article  Google Scholar 

  45. A. Auxéméry, B. B. Frias, E. Smal, K. Dziadek, G. Philippot, P. Legutko, M. Simonov, S. Thomas, A. Adamski, V. Sadykov, K. Parkhomenko, A.-C. Rogerb, and C. Aymonier, J. Supercrit. Fluids 162, 104855 (2020).

    Article  Google Scholar 

  46. V. Fedorova, M. Simonov, K. Valeev, Y. Bespalko, E. Smal, N. Eremeev, E. Sadovskaya, T. Krieger, and A. Ishchenko, Energies 14, 2973 (2021).

    Article  CAS  Google Scholar 

  47. V. Sánchez Escribano, E. Fernández, M. Panizza, C. Resini, J. M. Gallardo Amores, and G. Busca, Solid State Sci. 5, 1369 (2003).

    Article  Google Scholar 

  48. A. Romero-Núñez and G. Diaz, RSC Adv. 5, 54571 (2015).

  49. M. Y. Smirnova, A. S. Bobin, S. N. Pavlova, A. V. Ishchenko, A. V. Selivanova, V. V. Kaichev, S. V. Cherepanova, T. A. Krieger, M. V. Arapova, A.-C. Rogerb, A. Adamski, and V. A. Sadykov, Open Chem. 15, 412 (2017).

    Article  CAS  Google Scholar 

  50. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).

    Article  Google Scholar 

  51. M. Arapova, E. Smal, Y. Bespalko, V. Fedorova, K. Valeev, S. Cherepanova, A. Ischenko, V. Sadykov, and M. Simonov, Int. J. Hydrogen Energy 46, 39236 (2021).

    Article  CAS  Google Scholar 

  52. H. Roh, K. Young, and W. Lai, Catal. Today 146, 71 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Shared Facilities Center “High Technologies and Analytics of Nanosystems” of Novosibirsk State University for conducting the measurements on their scientific equipment.

Funding

This study was performed as part of project no. 18-73-10167 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Bespalko.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespalko, Y.N., Fedorova, V.E., Smal, E.A. et al. Ni and Ni–Co Catalysts Based on Mixed Ce–Zr Oxides Synthesized in Isopropanol Medium for Dry Reforming of Methane. Russ. J. Phys. Chem. B 16, 1384–1396 (2022). https://doi.org/10.1134/S1990793122080048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122080048

Keywords:

Navigation