Skip to main content
Log in

Artificial Injection of Energy Electrons from the Earth’s Radiation Belt: A New Channel for Modifying Ionized and Neutral Atmospheric Components

  • CHEMICAL PHYSICS OF ATMOSPHERIC PHENOMENA
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The results of studying the characteristics of the artificial injection of energetic electrons from the Earth’s radiation belt into the ionosphere when it is heated by high-power HF radio waves are presented. The experiments were carried out at the SURA midlatitude heating facility. It is shown that such an injection has a high energy and can be considered as a new channel for the modification of the neutral and ionized components of the Earth’s atmosphere. The experimental data on the effect of energetic electrons additional ionization of the low ionosphere, on the generation of microwave radiation at ionospheric heights, and on the ozone content at mesosphere heights are analyzed. An interpretation is given of the phenomena observed in this case and their possible influence on the properties of the surface layer of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. V. Gurevich, Nonlinear Phenomena in the Ionosphere (Springer, New York, 1978).

    Book  Google Scholar 

  2. L. M. Duncan and W. E. Gordon, J. Atmos. Terr. Phys. 44, 1009 (1982).

    Article  Google Scholar 

  3. P. Stubbe, H. Kopka, H. Lauche, et al., J. Atmos. Terr. Phys. 44, 1025 (1982).

    Article  CAS  Google Scholar 

  4. V. L. Frolov, N. V. Bakhmet’eva, V. V. Belikovich, G. G. Vertogradov, V. G. Vertogradov, G. P. Komrakov, D. S. Kotik, N. A. Mityakov, S. V. Polyakov, V. O. Rapoport, E. N. Sergeev, E. D. Tereshchenko, A. V. Tolmacheva, V. P. Uryadov, and B. Z. Khudukon, Phys. Usp. 50, 315 (2007).

    Article  Google Scholar 

  5. V. L. Frolov, Artificial Turbulence in the Mid-Latitude Ionosphere (NNGU im. N. I. Lobachevskogo, Nizh. Novgorod, 2017) [in Russian].

  6. A. V. Streltsov, J. J. Berthelier, A. A. Chernyshov, et al., Space Sci. Rev. 214, 118 (2018).

    Article  Google Scholar 

  7. A. G. Demekhov, V. Y. Trakhtengerts, M. M. Mogilevsky, et al., Adv. Space Res. 32, 355 (2003).

    Article  Google Scholar 

  8. M. Parrot and Y. Zaslavski, Surv. Geophys. 17, 67 (1996).

    Article  Google Scholar 

  9. B. E. Bryunelli and A. A. Namgaladze, Physics of Ionosphere (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  10. M. G. Demin, Earth’s Ionosphere. Plasma Heliogeophysics (Fizmatlit, Moscow, 2008), Vol. 2 [in Russian].

    Google Scholar 

  11. J. A. Ratcliffe, An Introduction to Ionosphere and Magnetosphere (Cambridge Univ. Press, Cambridge, 1972).

    Google Scholar 

  12. N. Blaunstein and E. Plohotniuc, Ionosphere and Applied Aspects of Radio Communication and Radar (CRC, Boca Raton, 2008).

    Book  Google Scholar 

  13. A. V. Gurevich, Phys. Usp. 50, 1091 (2007).

    Article  CAS  Google Scholar 

  14. L. M. Erukhimov and L. G. Genkin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 35, 863 (1992).

    Google Scholar 

  15. P. Stubbe and T. Hagfors, Surv. Geophys. 18, 57 (1997).

    Article  Google Scholar 

  16. T. B. Leyser and A. Y. Wong, Rev. Geophys. 47, RG1001 (2009).

    Article  Google Scholar 

  17. A. V. Gurevich and I. S. Shlyuger, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 18, 1237 (1975).

    Google Scholar 

  18. W. F. Utlaut and R. Cohen, Science (Washington, DC, U. S.) 245, 245 (1971).

    Article  Google Scholar 

  19. Spec. Issue, Radio Sci. 9 (11) (1974).

  20. L. M. Erukhimov, S. A. Metelev, E. N. Myasnikov, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz. 30, 208 (1987).

    Google Scholar 

  21. V. L. Frolov, V. O. Rapoport, E. A. Shorokhova, et al., Radiophys. Quantum Electron. 59, 177 (2016).

    Article  Google Scholar 

  22. A. Vartanyan, G. M. Milikh, E. Mishin, et al., J. Geophys. Res. 117, A10307 (2012).

    Google Scholar 

  23. R. Y. Lukianova, V. L. Frolov, and A. O. Ryabov, Geophys. Rev. Lett. 46, 12731 (2019).

    Article  Google Scholar 

  24. V. L. Frolov, R. Yu. Luk’yanova, A. O. Ryabov, and I. A. Bolotin, Cosmic Res. 59, 231 (2021).

    Article  Google Scholar 

  25. V. V. Belikovich, S. M. Grach, A. N. Karashtin, et al., Radiophys. Quantum Electron. 50, 497 (2007).

    Article  Google Scholar 

  26. R. J. Gamble, C. J. Rodger, M. A. Clilverd, et al., J. Geophys. Res. 113, A10211 (2008).

    Article  Google Scholar 

  27. R. A. Helliwell, Space Sci. Rev. 15, 781 (1974).

    Article  Google Scholar 

  28. P. Kulkarni, U. S. Inan, T. F. Bell, et al., J. Geophys. Res. 113, A07214 (2008).

    Google Scholar 

  29. U. S. Inan, M. Golkovski, D. L. Carpenter, et al., Geophys. Rev. Lett. 31, L24805 (2004).

  30. M. Platino, U. S. Inan, T. F. Bell, et al., Geophys. Rev. Lett. 33, L16101 (2006).

  31. D. Piddyachiy, T. F. Bell, J. J. Berthelier, et al., J. Geophys. Res. 116, A06304 (2011).

    Google Scholar 

  32. N. F. Blagoveshchenskaya, Geophysical Effects of Active Actions in the Near-Earth Outer Space (Gidrometeoizdat, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  33. N. F. Blagoveshchenskaya, Radio Sci. Bull. 2020 (373), 40 (2020).

    Google Scholar 

  34. J. A. Sauvaud, T. Moreau, R. Maggiolo, et al., Planet. Space Sci. 54, 502 (2006).

    Article  Google Scholar 

  35. A. A. Krivolutskii and A. I. Repnev, Impact of Cosmic Factors on the Earth’s Ozonosphere (GEOS, Moscow, 2009) [in Russian].

    Google Scholar 

  36. M. M. Lam, R. B. Horne, N. P. Meredith, et al., J. Geophys. Res. 115 (A4), A00F08 (2010).

    Article  Google Scholar 

  37. The National Oceanic and Atmospheric Administration (NOAA). www.noaa.gov.

  38. Ya. Lastovichka, Geomagn. Aeron. 20, 880 (1980).

    Google Scholar 

  39. V. L. Frolov, A. D. Akchurin, I. A. Bolotin, et al., Radiophys. Quantum Electron. 62, 571 (2019).

    Article  Google Scholar 

  40. A. O. Ryabov, V. L. Frolov, and A. D. Akchurin, Radiophys. Quantum Electron. 63, 257 (2020).

    Article  Google Scholar 

  41. V. L. Frolov, A. O. Ryabov, and A. D. Akchurin, Cosmic Res. 60, 254 (2022).

    Article  Google Scholar 

  42. R. B. Horne, M. M. Lam, and J. C. Green, Geophys. Rev. Lett. 36, L19104 (2009).

  43. L. A. Skrebkova, Geomagn. Aeron. 15, 664 (1975).

    Google Scholar 

  44. T. B. Leyser, Space Sci. Rev. 98, 223 (2001).

    Article  Google Scholar 

  45. N. D. Borisov, Phys. Lett. A 206, 240 (1995).

    Article  CAS  Google Scholar 

  46. E. Camporeale, G. L. Delzanno, and P. Colestock, J. Geophys. Res. 117, A10315 (2012).

    Article  Google Scholar 

  47. B. Eliasson and K. Papadopoulos, J. Geophys. Res. 113, A093315 (2008).

    Google Scholar 

  48. H. G. James, U. S. Inan, and M. T. Rietveld, J. Geophys. Res. 95 (A8), 187 (1990).

    Google Scholar 

  49. P. P. Belyaev, D. S. Kotik, S. H. Mityakov, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz. 30, 248 (1987).

    Google Scholar 

  50. P. Stubbe, J. Atmos. Terr. Phys. 58, 349 (1996).

    Article  Google Scholar 

  51. V. A. Bespalov and V. Yu. Trakhtengerts, Vopr. Teor. Plazmy, No. 10, 88 (1980).

    Google Scholar 

  52. E. V. Mishin, Yu. Ya. Ruzhin, and V. A. Telegin, Interaction between Ion Beams and an Ionospheric Plasma (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  53. V. O. Rapoport, V. L. Frolov, S. V. Polyakov, et al., J. Geophys. Res. 115, A10322 (2010).

    Article  Google Scholar 

  54. D. L. Pasmanirk and A. G. Demekhov, J. Geophys. Res. Space Phys. 122, 8124 (2017).

    Article  Google Scholar 

  55. L. F. Chernogor, Physics of Powerful Radio Emission in Geocosmos (KhNU im. V. N. Karazina, Kharkov, 2014) [in Russian].

  56. T. A. Potemra and A. J. Zmuda, J. Geophys. Res. 75, 7161 (1970).

    Article  Google Scholar 

  57. L. F. Chernogor, K. P. Garmash, and V. L. Frolov, Radiophys. Quantum Electron. 62, 395 (2019).

    Article  Google Scholar 

  58. W. F. Utlaut and E. J. Violette, Radio Sci. 9, 895 (1974).

    Article  Google Scholar 

  59. G. M. Milikh, A. Demekhov, A. Vartanyan, et al., Geophys. Rev. Lett. 39, L10102 (2012).

  60. A. G. Demekhov, Radiophys. Quantum Electron. 65 (2) (2022, in press).

  61. V. V. Vas’kov, P. P. Belyaev, N. I. Bud’ko, et al., Geomagn. Aeron. 33 (6), 91 (1993).

    Google Scholar 

  62. V. M. Kostin, Yu. A. Romanovskii, V. M. Chmyrev, et al., Kosm. Issled. 31, 84 (1993).

    Google Scholar 

  63. V. V. Vaskov, N. I. Budko, O. V. Kapustina, et al., J. Atmos. Sol.-Terr. Phys. 60, 1261 (1998).

    Article  Google Scholar 

  64. V. L. Frolov, A. O. Ryabov, and I. A. Bolotin, in Proceedings of the 17th Annual Conference on Plasma Physics in Solar System (IKI, Moscow, 2022), p. 178.

  65. Sun Basu, E. MacKenzie, Basu Sant, et al., Radio Sci. 18, 1151 (1983).

    Article  Google Scholar 

  66. J. W. Wright, J. Geophys. Res. 80, 4383 (1975).

    Article  Google Scholar 

  67. E. A. Benediktov, Yu. S. Korobkov, N. A. Mityakov, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz. 3, 957 (1960).

    Google Scholar 

  68. M. T. Rietveld, M. J. Kosch, N. F. Blagoveshchenskaya, et al., J. Geophys. Res. 108, 1141 (2003).

    Article  Google Scholar 

  69. V. S. Troitskii, L. N. Bondar’, and A. M. Starodubtsev, Dokl. Akad. Nauk SSSR 212, 719 (1973).

    Google Scholar 

  70. V. S. Troitskii, A. M. Starodubtsev, L. N. Bondar’, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 323 (1973).

    Google Scholar 

  71. L. N. Bondar’, K. M. Strezhneva, and V. S. Troitskii, Astron. Vestn. 9, 210 (1975).

    Google Scholar 

  72. S. I. Musatenko, Geomagn. Aeron. 20, 884 (1980).

    Google Scholar 

  73. S. V. Avakyan, in Proceedings of the International Conference on Physics of Solar-Earth Relations (Nauka, Almaty, 1994), p. 3.

  74. S. V. Avakyan, A. E. Serova, and N. A. Voronin, Geomagn. Aeron. 37, 331 (1997).

    Google Scholar 

  75. R. L. Sorochenko, Physics of the Space (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  76. S. M. Grach, V. M. Fridman, L. M. Lifshits, et al., Ann. Geophys. 20, 1687 (2002).

    Article  Google Scholar 

  77. S. V. Avakyan and N. A. Voronin, Issled. Zemli Kosmosa, No. 2, 28 (2007).

    Google Scholar 

  78. S. V. Avakyan, Geomagn. Aeron. 48, 417 (2008).

    Article  Google Scholar 

  79. S. V. Avakyan and N. A. Voronin, J. Opt. Technol. 75, 687 (2008).

    Article  CAS  Google Scholar 

  80. W. O. Roberts, in Proceedings of the Symposium/Workshop on Solar-Terrestrial Influences on Weather and Climate, Ed. by B. M. McCormac and T. A. Seliga (D. Reidel, Dordrecht, 1979), p. 29.

  81. R. F. Marshall and C. M. Cully, in The Dynamic Loss of Earth’s Radiation Belts, Ed. by A. N. Jaynes and M. E. Usanova (Elsevier, Amsterdam, 2020), Ch. 7, p. 199.

    Google Scholar 

  82. T. I. Gombosi, D. N. Baker, A. Balogh, et al., Space Sci. Rev., No. 212, 985 (2017).

  83. E. Rozanov, M. Calisto, T. Egorova, et al., Surv. Geophys. 33, 483 (2012).

    Article  Google Scholar 

  84. K. Semeniuk, V. I. Fomichev, J. C. McConnel, et al., Atmos. Chem. Phys. 11, 5045 (2011).

    Article  CAS  Google Scholar 

  85. P. Arsenovic, E. Rozanov, A. Stenke, et al., J. Atmos. Sol.-Terr. Phys. 149, 180 (2016).

    Article  CAS  Google Scholar 

  86. A. D. Danilov, Popular Aeronomy (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  87. Yu. Yu. Kulikov and V. L. Frolov, Russ. J. Phys. Chem. B 7, 692 (2013).

    Article  CAS  Google Scholar 

  88. A. F. Andrianov, N. V. Bakhmet’eva, V. D. Vyakhirev, et al., Radiophys. Quantum Electron. 62, 326 (2019).

    Article  Google Scholar 

  89. Yu. Yu. Kulikov, V. L. Frolov, G. I. Grigor’ev, V. M. Demkin, G. P. Komrakov, A. A. Krasilnokov, and V. G. Ryskin, Geomagn. Aeron. 53, 96 (2013).

    Article  Google Scholar 

  90. Yu. Yu. Kulikov, G. I. Grigor’ev, A. A. Krasil’nikov, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz. 55 (4), 57 (2012).

    CAS  Google Scholar 

  91. M. Sinnhuber and B. Funke, in The Dynamic Loss of Earth’s Radiation Belts, Ed. by A. N. Jaynes and M. E. Usanova (Elsevier, Amsterdam, 2020), Ch. 9, p. 279.

    Google Scholar 

  92. M. E. Andersson, P. T. Verronen, C. J. Rodger, et al., Nat. Commun. 5, 5197 (2014).

    Article  PubMed  CAS  Google Scholar 

  93. H. M. Pickett, W. G. Read, K. K. Lee, et al., Geophys. Rev. Lett. 33, L19808 (2006).

  94. H. M. Pickett, B. J. Drouin, T. Canty, et al., J. Geophys. Res. 113, D16S30 (2008).

    Google Scholar 

  95. P. T. Verronen, C. J. Rodger, M. A. Clilverd, et al., J. Geophys. Res. 116, D07307 (2011).

    Google Scholar 

  96. G. V. Golubkov, A. V. Dmitriev, A. V. Suvorova, and M. G. Golubkov, Russ. J. Phys. Chem. B 13, 874 (2019).

    Article  CAS  Google Scholar 

  97. M. G. Golubkov, A. V. Suvorova, A. V. Dmitriev, and G. V. Golubkov, Russ. J. Phys. Chem. B 14, 873 (2020).

    Article  CAS  Google Scholar 

  98. M. G. Golubkov, A. V. Dmitriev, A. V. Suvorova, and G. V. Golubkov, Russ. J. Phys. Chem. B 16, 537 (2022).

    Article  CAS  Google Scholar 

  99. A. V. Dmitriev, A. V. Suvorova, S. Ghosh, et al., Atmosphere 13, 322 (2022).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the staff of the SURA facility (Radiophysical Research Institute, University of Nizhny Novgorod) for their help in organizing and conducting experiments and Kazan Federal University for the opportunity to use data from the Kazan digital ionosonde.

Funding

The studies of the artificial injection of energetic electrons from the Earth’s radiation belt to ionospheric heights and their influence on atmospheric processes were carried out by V.L. Frolov at the SURA heating facility with financial support from the Russian Foundation for Basic Research as part of scientific project no. 20-05-00166. Research by A.V. Troitsky was carried out as part of the basic part of the state order of the Ministry of Science and Higher Education of the Russian Federation (project 0729-2020-0057). Research by Yu.Yu. Kulikov was carried out with financial support from the Russian Foundation for Basic Research as part of scientific project no. 18-45-520009. The work regarding the use of the “Cyclone” ionosonde (Kazan) was carried out by A.D. Akchurin (Kazan Federal University, Kazan) and V.L. Frolov with funding from the Strategic Academic Leadership Program of the Kazan (Volga Region) Federal University (PRIORITET-2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Frolov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, V.L., Kulikov, Y.Y. & Troitsky, A.V. Artificial Injection of Energy Electrons from the Earth’s Radiation Belt: A New Channel for Modifying Ionized and Neutral Atmospheric Components. Russ. J. Phys. Chem. B 16, 965–989 (2022). https://doi.org/10.1134/S1990793122050190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122050190

Keywords:

Navigation