Skip to main content
Log in

Understanding the Kinetics and Reduction of Methylene Blue Using NaBH4

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract—

The complete mechanism and kinetics of NaBH4 assisted methylene blue (MB) reduction are evaluated using density-functional theory calculations with B3LYP/6-311G(d, p) and M06-2X/6-311G(d, p) with implicit solvent model. Our calculations indicate that the reduction process initiates with a nucleophilic borohydride ion attack on the active site of MB, followed by proton abstraction with a hydroxyl ion attack released from water resulting in the formation of an intermediate species. The product formation is finally achieved by two pathways. The first pathway involves the direct hydrolysis on active site of an intermediate. Alternatively, the second pathway includes the interaction of BH3 with the intermediate in order to attain stability. Subsequently, the final product, i.e., leuco methylene blue (LMB) is formed via hydrolysis. The stabilization study of both the transition states was carried out by natural bond orbital (NBO) analysis at the same level of theory with implicit solvent model. Interactions between the transition states reveal that the latter pathway is more stable than the former. Our calculations indicate that the second step of the reaction, hydroxyl ion assisted proton abstraction, has the highest barrier height and thus will control the kinetics of the reaction. The estimated values of rate constant, at M06-2X level of theory, were in agreement with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ö. Gerçel, H. F. Gerçel, A. S. Koparal, and Ü. B. Öğütveren, J. Hazard Mater. 160, 668 (2008). https://doi.org/10.1016/j.jhazmat.2008.03.039

    Article  PubMed  CAS  Google Scholar 

  2. S. Karaca, A. Gürses, M. Açıkyıldız, and M. Ejder, Microporous Mesoporous Mater. 115, 376 (2008). https://doi.org/10.1016/j.micromeso.2008.02.008

    Article  CAS  Google Scholar 

  3. A. Houas, I. Bakir, M. Ksibi, and E. Laloui, J. Chem. Phys. 96, 479 (1999). https://doi.org/10.1051/jcp:1999139

    Article  CAS  Google Scholar 

  4. U. Pagga and D. Brown, Chemosphere 15, 479 (1986). https://doi.org/10.1016/0045-6535(86)90542-4

    Article  CAS  Google Scholar 

  5. G. S. Gupta, G. Prasad, and V. N. Singh, Water Res. 24, 45 (1990). https://doi.org/10.1016/0043-1354(90)90063-C

    Article  CAS  Google Scholar 

  6. K. R. Ramakrishna and T. Viraraghavan, Water Sci. Technol. 36, 189 (1997). https://doi.org/10.2166/wst.1997.0516

    Article  CAS  Google Scholar 

  7. S. S. Patil and V. M. Shinde, Environ. Sci. Technol. 23, 1160 (1988). https://doi.org/10.1021/es00175a005

    Article  Google Scholar 

  8. A. T. Moore, A. Vira, and S. Fogel, Environ. Sci. Technol. 23, 403 (1989). https://doi.org/10.1021/es00181a003

    Article  CAS  Google Scholar 

  9. D. Bhatia, N. R. Sharma, J. Singh, and R. S. Kanwar, Crit. Rev. Environ. Sci. Technol. 47, 1836 (2017). https://doi.org/10.1080/10643389.2017.1393263

    Article  CAS  Google Scholar 

  10. Y. M. Solkar and A. M. le Marechal, Dyes Pigm. 37, 335 (1998). https://doi.org/10.1016/S0143-7208(97)00075-2

    Article  Google Scholar 

  11. A. Houas, H. Lachheb, M. Ksibi, et al., Appl. Catal. B: Environ. 31, 145 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9

    Article  CAS  Google Scholar 

  12. A. Mills and J. Wang, J. Photochem. Photobiol. A 127, 123 (1999). https://doi.org/10.1016/S1010-6030(97)00118-4

    Article  CAS  Google Scholar 

  13. A. A. Kashmeri, F. Nawaz, and M. Yousaf, Russ. J. Phys. Chem. B 14, 552 (2020). https://doi.org/10.1134/S1990793120030069

    Article  Google Scholar 

  14. S. Pe, S. Kumar Ghosh, S. Nath, et al., J. Colloid Interface Sci. 299, 421 (2006). https://doi.org/10.1016/j.jcis.2006.01.052

    Article  CAS  Google Scholar 

  15. A. A. Osunlaja, S. O. Idris, and J. F. Iyun, Int. J. Chemtech Res. 4, 609 (2012).

    CAS  Google Scholar 

  16. N. Cheval, N. Gindy, C. Flowkes, and A. Fahmi, Nanoscale Res. Lett. 7, 182 (2012). https://doi.org/10.1186/1556-276X-7-182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. B. Ganapuram, M. Alle, R. Dadigala, et al., Int. Nano. Lett. 5, 215 (2015). https://link.springer.com/article/ 10.1007/s40089-015-0158-3

    Article  CAS  Google Scholar 

  18. D. C. Wigfield and D. J. Phelps, J. Org. Chem. 41, 2396 (1976). https://doi.org/10.1021/jo00876a010

    Article  CAS  Google Scholar 

  19. D. C. Wigfield and F. W. Gowland, J. Org. Chem. 42, 1108 (1977). https://doi.org/10.1021/jo00426a048

    Article  CAS  Google Scholar 

  20. D. C. Wigfield, Tetrahedron 35, 449 (1979). https://doi.org/10.1016/0040-4020(79)80140-4

    Article  CAS  Google Scholar 

  21. R. S. Glass, D. R. Deardorff, and K. Henegar, Tetrahedron Lett. 21, 2467 (1980). https://doi.org/10.1016/0040-4039(80)80101-8

    Article  CAS  Google Scholar 

  22. V. K. Yadav, D. A. Jeyaraj, and R. Balamurugan, Tetrahedron 56, 7581 (2000). https://doi.org/10.1016/S0040-4020(00)00663-3

    Article  CAS  Google Scholar 

  23. Y. Suzuki, D. Kaneno, and S. Tomoda, J. Phys. Chem. A 113, 2578 (2009). https://doi.org/10.1021/jp809966u

    Article  PubMed  CAS  Google Scholar 

  24. H. Deng, J. Lu, G. Li, G. Zhang, and X. Wang, Chem. Eng. J. 172, 326 (2011). https://doi.org/10.1016/j.cej.2011.06.013

    Article  CAS  Google Scholar 

  25. P. Mukherjee and A. K. Ghosh, J. Am. Chem. Soc. 92, 6403 (1970). https://doi.org/10.1021/ja00725a002

    Article  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision A (Gaussian, Inc., Wallingford CT, 2009).

    Google Scholar 

  27. A. Fábián, F. Ruff, and Ö. Farkas, J. Phys. Org. Chem. 21, 988 (2008). https://doi.org/10.1002/poc.1412

    Article  CAS  Google Scholar 

  28. P. Adamczyk, A. Dybala-Defratyka, and P. Paneth, Environ. Sci. Technol. 45, 3006 (2011). https://doi.org/10.1021/es103251u

    Article  PubMed  CAS  Google Scholar 

  29. Y. Zhao and D. Truhlar, Theor. Chem. Acc. 120, 215 (2008). https://link.springer.com/article/10.1007/ s00214-007-0310-x

    Article  CAS  Google Scholar 

  30. D. Nori-Shargh and J. E. Boggs, J. Phys. Org. Chem. 24, 212 (2010). https://doi.org/10.1002/poc.1728

    Article  CAS  Google Scholar 

  31. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988). https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  32. E. D. Glendening, C. R. Landis, and F. Weinhold, WIREs Comput. Mol. Sci. 2, 1 (2012). https://doi.org/10.1002/wcms.51

    Article  CAS  Google Scholar 

  33. M. Suenaga, K. Nakata, J. L. M. Abboud, and M. Mishima, J. Phys. Org. Chem. 31, e3721 (2017). https://doi.org/10.1002/poc.3721

    Article  CAS  Google Scholar 

  34. J. Khedkar, R. Pinjari, and S. Gejji, J. Phys. Chem. A 115, 10624 (2011). https://doi.org/10.1021/jp205441s

    Article  PubMed  CAS  Google Scholar 

  35. E. Kavery, G. Vinodha, S. Prabhu, R. Renganathan, C. S. Yee, and Md. M. R. Khan, Russ. J. Phys. Chem. B 15, S92 (2021). https://doi.org/10.1134/S1990793121090098

    Article  CAS  Google Scholar 

  36. T. E. Skrebets, A. D. Ivakhnov, K. S. Sadkova, and K. G. Bogolitsyn, Russ. J. Phys. Chem. B 15, 1142 (2021). https://doi.org/10.1134/S1990793121070149

    Article  CAS  Google Scholar 

  37. F. Azarakhshi and M. Khaleghian, Russ. J. Phys. Chem. B 15, 170 (2021). https://doi.org/10.1134/S1990793121010152

    Article  Google Scholar 

  38. P. Patel, S. Lingayat, N. Gulvi, and P. Badani, Chem. Phys. 506, 13 (2018). https://doi.org/10.1016/j.chemphys.2018.02.021

    Article  CAS  Google Scholar 

  39. C. Qi, L. Shao, Y. Lu, C. Wang, and X. M. Zhang, J. Phys. Org. Chem. 25, 523 (2011). https://doi.org/10.1002/poc.1950

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Lingayat or P. M. Badani.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Maliekal, P.J., Lingayat, S. et al. Understanding the Kinetics and Reduction of Methylene Blue Using NaBH4. Russ. J. Phys. Chem. B 16, 869–876 (2022). https://doi.org/10.1134/S1990793122050074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122050074

Keywords:

Navigation