Skip to main content
Log in

Thermodynamic Evaluation of Wood Tars’ Oxy-Conversion with the Production of Hydrogen and Synthesis Gas

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A thermodynamic evaluation of the modes of oxidative conversion of wood pyrolysis products with the production of hydrogen and synthesis gas is carried out. The modes of air, oxygen, and steam-air conversion of wood pyrolysis products are studied. In the case of air conversion, with an increase of the fuel-air equivalence ratio (φ), the hydrogen concentration increases logarithmically to 29 vol % at φ = 10 and T = 1000 K; however, at φ = 3, the condensed carbon appears in the products. An increase in temperature to 1300 K slightly enhances the hydrogen yield to 33 vol % at φ = 10, and shifts the appearance of soot into richer mixtures at φ = 5. The addition of water vapor leads to an increase in the hydrogen content in the products and a shift in soot formation to φ = 9. Oxygen conversion makes it possible to increase the concentrations of hydrogen and carbon monoxide to 42.1 and 45.5 vol %, respectively, due to the absence of their dilution with nitrogen. The presence of condensed carbon is not a disadvantage of the process and can be considered as a target product, while the amount of carbon dioxide emissions is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. V. M. Shmelev, V. S. Arutyunov, H. Yang, and Ch. Yim, Russ. J. Phys. Chem. B 11, 429 (2017). https://doi.org/10.1134/S1990793117030083

    Article  CAS  Google Scholar 

  2. A. M. Oliveira, R. R. Beswick, and Y. Yan, Curr. Opin. Chem. Eng. 33, 100701 (2021). https://doi.org/10.1016/j.coche.2021.100701

    Article  Google Scholar 

  3. N. Sunny, N. MacDowell, and N. Shah, Energy Environ. Sci. 13, 4204 (2020). https://doi.org/10.1039/D0EE02016H

    Article  CAS  Google Scholar 

  4. V. S. Arutyunov and L. N. Strekova, Neftegazokhimiya, Nos. 1–2, 8 (2021). https://doi.org/10.24412/2310-8266-2021-1-2-8-11

  5. S. M. Aldoshin, V. S. Arutyunov, V. I. Savchenko, I. V. Sedov, A. V. Nikitin and I. G. Fokin, Russ. J. Phys. Chem. B 15, 498 (2021). https://doi.org/10.1134/S1990793121030039

    Article  CAS  Google Scholar 

  6. P. J. Megía, A. J. Vizcaíno, J. A. Calles, and A. Carrero, Energy Fuels 35, 16403 (2021). https://doi.org/10.1021/acs.energyfuels.1c02501

    Article  CAS  Google Scholar 

  7. M. Newborough and G. Cooley, Fuel Cells Bull. 2020 (11), 16 (2020). https://doi.org/10.1016/S1464-2859(20)30546-0

    Article  Google Scholar 

  8. G. Kakoulaki, I. Kougias, N. Taylor, et al., Energy Convers. Manag. 228, 113649 (2021). https://doi.org/10.1016/j.enconman.2020.113649

    Article  CAS  Google Scholar 

  9. F. Dawood, M. Anda, and G. M. Shafiullah, Int. J. Hydrogen Energy 45, 3847 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.059

    Article  CAS  Google Scholar 

  10. D. Scamman and M. Newborough, Int. J. Hydrogen Energy 41, 10080 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.166

    Article  CAS  Google Scholar 

  11. A. E. Karaca, I. Dincer, and J. Gu, Int. J. Hydrogen Energy 45, 22148 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.030

    Article  CAS  Google Scholar 

  12. K. I. Yakubson, Russ. J. Appl. Chem. 93, 1775 (2020). https://doi.org/10.1134/S1070427220120010

    Article  CAS  Google Scholar 

  13. H. A. Miller, K. Bouzek, J. Hnat, et al., Sustain. Energy Fuels 4, 2114 (2020). https://doi.org/10.1039/c9se01240k

    Article  CAS  Google Scholar 

  14. H. Zhang, Z. Sun, and Y. H. Hu, Renewable Sustainable Energy Rev. 149, 111330 (2021). https://doi.org/10.1016/j.rser.2021.111330

    Article  CAS  Google Scholar 

  15. N. Ripoll, E. Salgansky, and M. Toledo, Int. J. Heat Mass Transf. 177, 121472 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121472

    Article  CAS  Google Scholar 

  16. A. Boretti, Int. J. Hydrogen Energy 46, 23988 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.182

    Article  CAS  Google Scholar 

  17. M. Fierro, P. Requena, E. Salgansky, and M. Toledo, Chem. Eng. J. 2021, 130178 (2021). https://doi.org/10.1016/j.cej.2021.130178

    Article  CAS  Google Scholar 

  18. R. W. Howarth and M. Z. Jacobson, Energy Sci. Eng. 9, 1676 (2021). https://doi.org/10.1002/ese3.956

    Article  CAS  Google Scholar 

  19. S. P. Filippov and A. B. Yaroslavtsev, Russ. Chem. Rev. 90, 627 (2021). https://doi.org/10.1070/RCR5014

    Article  Google Scholar 

  20. F. Kerscher, A. Stary, S. Gleis, et al., Int. J. Hydrogen Energy 46, 19897 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.114

    Article  CAS  Google Scholar 

  21. K. Harun, S. Adhikari, and H. Jahromi, RSC Adv. 10, 40882 (2020). https://doi.org/10.1039/D0RA07440C

  22. T. Rin, C. Sangwichien, R. Yamsaengsung, and T. Reungpeerakul, Int. J. Hydrogen Energy 46, 28450 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.101

    Article  CAS  Google Scholar 

  23. Q. Q. Chen, M. Lv, Y. Gu, et al., Joule 2, 607 (2018). https://doi.org/10.1016/j.joule.2018.02.015

    Article  CAS  Google Scholar 

  24. V. I. Klishin, Yu. F. Patrakov, and G. A. Mandrov, Solid Fuel Chem. 47, 303 (2013). https://doi.org/10.3103/S0361521913050054

    Article  CAS  Google Scholar 

  25. A. Midilli, H. Kucuk, M. E. Topal, U. Akbulut, and I. Dincer, Int. J. Hydrogen Energy 46, 25385 (2021). https://doi.org/10.1016/j.ijhydene.2021.05.088

    Article  CAS  Google Scholar 

  26. R. P. Lee, L. G. Seidl, and B. Meyer, Clean Energy 5, 180 (2021). https://doi.org/10.1093/ce/zkab002

    Article  Google Scholar 

  27. A. P. H. Goede, EPJ Web Conf. EDP Sci. 189, 00010 (2018). https://doi.org/10.1051/epjconf/201818900010

    Article  CAS  Google Scholar 

  28. B. Prabowo, M. Aziz, K. Umeki, et al., Appl. Energy 158, 97 (2015). https://doi.org/10.1016/j.apenergy.2015.08.060

    Article  CAS  Google Scholar 

  29. D. N. Podlesniy, A. Yu. Zaichenko, M. V. Tsvetkov, et al., Fuel 298, 120862 (2021). https://doi.org/10.1016/j.fuel.2021.120862

    Article  CAS  Google Scholar 

  30. Y. Richardson, J. Blin, and A. Julbe, Prog. Energy Combust. Sci. 38, 765 (2012). https://doi.org/10.1016/j.pecs.2011.12.001

    Article  CAS  Google Scholar 

  31. Y. Shen and K. Yoshikawa, Renewable Sustainable Energy Rev. 21, 371 (2013). https://doi.org/10.1016/j.rser.2012.12.062

    Article  CAS  Google Scholar 

  32. V. M. Kislov, S. V. Glazov, M. V. Salganskaya, E. N. Pilipenko, and Yu. Yu. Tsvetkova, Russ. J. Appl. Chem. 94, 347 (2021). https://doi.org/10.1134/S1070427221030113

    Article  CAS  Google Scholar 

  33. V. V. Petrov, Yu. N. Varzarev, A. P. Starnikova, and Kh. A. Abdullin, Russ. J. Phys. Chem. B 14, 117 (2020). https://doi.org/10.1134/S199079312001025X

    Article  CAS  Google Scholar 

  34. B. G. Trusov, in Proceedings of the 14th International Conference on Chemical Thermodynamics (NIIKh SPbGU, St. Petersburg, 2002), p. 483.

  35. A. Antzara, E. Heracleous, D. B. Bukur, and A. A. Lemonidou, Energy Proc. 63, 6576 (2014). https://doi.org/10.1016/j.egypro.2014.11.694

    Article  CAS  Google Scholar 

  36. F. F. Tabrizi, S. A. H. S. Mousavi, and H. Atashi, Energy Convers. Manage. 103, 1065 (2015). https://doi.org/10.1016/j.enconman.2015.07.005

    Article  CAS  Google Scholar 

  37. E. A. Salgansky, V. M. Kislov, S. V. Glazov, and M. V. Salganskaya, J. Combust. 2016, 9637082 (2016). https://doi.org/10.1155/2016/9637082

    Article  CAS  Google Scholar 

  38. S. N. Kozlov, A. M. Tereza, and S. P. Medvedev, Russ. J. Phys. Chem. B 15, 659 (2021). https://doi.org/10.1134/S1990793121040205

    Article  CAS  Google Scholar 

  39. A. M. Tereza, S. P. Medvedev, and V. N. Smirnov, Acta Astronaut. 176, 653 (2020). https://doi.org/10.1016/j.actaastro.2020.03.045

    Article  CAS  Google Scholar 

  40. A. M. Tereza, G. L. Agafonov, E. K. Anderzhanov, and S. P. Medvedev, Russ. J. Phys. Chem. B 15, 678 (2021). https://doi.org/10.1134/S1990793121040266

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out as part of a state assignment (registration number AAAA-A19-119022690098-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tsvetkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsvetkov, M.V., Kislov, V.M., Tsvetkova, Y.Y. et al. Thermodynamic Evaluation of Wood Tars’ Oxy-Conversion with the Production of Hydrogen and Synthesis Gas. Russ. J. Phys. Chem. B 16, 711–716 (2022). https://doi.org/10.1134/S1990793122040315

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122040315

Keywords:

Navigation