Skip to main content
Log in

Numerical Simulation of Autoignition Characteristics of Lean Hydrogen–Air Mixtures

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Simulations of autoignition and combustion processes in lean and ultra-lean hydrogen–air mixtures are performed in relation to safety aspects of nuclear power plants. Ignition delay times τ and laminar burning velocities SL are evaluated. Comparisons between simulation results obtained for temperatures ranging from 800 to 1700 K at initial pressures of 1 and 6 bar show that both the value of τ and the temperature-dependent behavior of autoignition characteristics vary weakly with hydrogen concentration in air. The largest difference between the values of τ predicted by different detailed kinetic mechanisms (DKMs) is observed at temperatures of 900 and 1100 K for pressures of 1 and 6 bar, respectively. The time to reach peak heat release significantly exceeds τ at initial temperatures above 1250 K. Simulations based on the different DKMs yield similar values of SL. It is concluded that each of the DKMs employed can provide satisfactory accuracy of simulations of autoignition and combustion processes in lean and ultra-lean hydrogen–air mixtures at pressures below 6 bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. Abou-Rjeily, G. Cénérino, A. Drozd, et al., IAEA-TECDOC-1661 (IAEA, Vienna, Austria, 2011).

  2. M. F. Ivanov, A. D. Kiverin, and A. Ye. Smygalina, Vestn. Bauman Mosk. Tekh. Univ., Ser. Estestv. Nauk, No. 1, 89 (2013)

    Google Scholar 

  3. I. Kirillov, N. Kharitonova, R. Sharafutdinov, and N. Krenniikov, Nucl. Radiat. Safety J. 2 (84), 26 (2017).

    Google Scholar 

  4. I. S. Yakovenko, M. F. Ivanov, A. D. Kiverin, and K. S. Melnikova, Int. J. Hydrogen Energy 43, 1894 (2018).

    Article  CAS  Google Scholar 

  5. I. Yakovenko, A. Kiverin, and K. Melnikova, Fluids 6, 21 (2021). https://doi.org/10.3390/fluids6010021

    Article  Google Scholar 

  6. G. P. Smith, D. M. Golden, M. Frenklach, et al., GRI-Mech 3.0 (1999). http://www.me.berkeley.edu/gri_mech/.

  7. P. Saxena and F. A. Williams, Combust. Flame 145, 316 (2006).

    Article  CAS  Google Scholar 

  8. A. Konnov, Combust. Flame 152, 507 (2008).

    Article  CAS  Google Scholar 

  9. T. le Cong and P. Dagaut, Proc. Combust. Inst. 32, 427 (2009).

    Article  CAS  Google Scholar 

  10. Z. Hong, D. F. Davidson, and R. K. Hanson, Combust. Flame 158, 633 (2011).

    Article  CAS  Google Scholar 

  11. K. Shimizu, A. Hibi, M. Koshi, Y. Morii, and N. Tsuboi, J. Propuls. Power 27, 383 (2011).

    Article  CAS  Google Scholar 

  12. M. P. Burke, M. Chaos, Y. Ju, F. L. Dryer, and S. J. Klippenstein, Int. J. Chem. Kinet. 44, 444 (2012).

    Article  CAS  Google Scholar 

  13. A. Keromnes, W. K. Metcalfe, K. A. Heufer, et al., Combust. Flame 160, 995 (2013).

    Article  CAS  Google Scholar 

  14. V. A. Alekseev, M. Christensen, and A. A. Konnov, Combust. Flame 162, 1884 (2015).

    Article  CAS  Google Scholar 

  15. P. A. Vlasov, V. N. Smirnov, and A. M. Tereza, Russ. J. Phys. Chem. B 10, 456 (2016). https://doi.org/10.1134/S1990793116030283

    Article  CAS  Google Scholar 

  16. G. P. Smith, Y. Tao, and H. Wang, Foundational Fuel Chemistry Model, Version 1.0 (FFCM-1) (2016). https://web.stanford.edu/group/haiwanglab/FFCM1/ pages/download.html.

  17. S. M. Hedayatzadeh, M. Soltanieh, E. Fatehifar, A. Heidarinasab, and M. R. J. Nasr, J. Res. Ecol. 4, 137 (2016).

    Google Scholar 

  18. O. V. Skrebkov, S. S. Kostenko, and A. L. Smirnov, Int. J. Hydrogen Energy 45, 3251 (2020).

    Article  CAS  Google Scholar 

  19. Y. Zhang, J. Fu, M. Xie, and J. Liu, Int. J. Hydrogen Energy 46, 5799 (2021).

    Article  CAS  Google Scholar 

  20. H. Hashemi, J. M. Christensen, S. Gersen, and P. Glarborg, Proc. Combust. Inst. 35, 553 (2015).

    Article  CAS  Google Scholar 

  21. E. Hu, L. Pan, Z. Gao, X. Lu, X. Meng, and Z. Huang, Int. J. Hydrogen Energy 41, 13261 (2016).

    Article  CAS  Google Scholar 

  22. D. L. Baulch, C. T. Bowman, C. J. Cobos, et al., J. Phys. Chem. Ref. Data 34, 757 (2005).

    Article  CAS  Google Scholar 

  23. A. Schonborn, P. Sayad, A. A. Konnov, and J. Klingmann, Int. J. Hydrogen Energy 39, 12166 (2014).

    Article  Google Scholar 

  24. V. A. Pavlov and G. Ya. Gerasimov, J. Eng. Phys. Thermophys. 87, 1291 (2014).

    Article  CAS  Google Scholar 

  25. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum, New York, 1969)

    Google Scholar 

  26. E. L. Petersen, D. M. Kalitan, and M. J. A. Rickard, in Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA, AL, Huntsville, 2003), Rep. AIAA 2003-4493.

  27. D. F. Davidson and R. K. Hanson, Int. J. Chem. Kinet. 36, 510 (2004).

    Article  CAS  Google Scholar 

  28. D. A. Masten, R. K. Hanson, and C. T. Bowman, J. Phys. Chem. 94, 7119 (1990).

    Article  CAS  Google Scholar 

  29. J. V. Michael, J. W. Sutherland, L. B. Harding, and A. F. Wagner, Proc. Combust. Inst. 28, 1471 (2000).

    Article  CAS  Google Scholar 

  30. J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, Int. J. Chem. Kinet. 36, 566 (2004).

    Article  CAS  Google Scholar 

  31. V. V. Martynenko, O. G. Penyaz’kov, K. A. Ragotner, and S. I. Shabunya, J. Eng. Phys. Thermophys. 77, 785 (2004).

    Article  CAS  Google Scholar 

  32. G. A. Pang, D. F. Davidson, and R. K. Hanson, Proc. Combust. Inst. 32, 181 (2009).

    Article  CAS  Google Scholar 

  33. O. Mathieu, A. Levacque, and E. L. Petersen, Int. J. Hydrogen Energy 37, 15393 (2012). https://doi.org/10.1016/j.ijhydene.2012.07.071

    Article  CAS  Google Scholar 

  34. C. R. Mulvihill and E. L. Petersen, Proc. Combust. Inst. 37, 259 (2019).

    Article  CAS  Google Scholar 

  35. C. J. Aul, M. W. Crofton, J. D. Mertens, and E. L. Petersen, Proc. Combust. Inst. 33, 709 (2011).

    Article  CAS  Google Scholar 

  36. A. E. Dahoe, J. Loss Prevent. Process Ind. 18, 152 (2005).

    Article  Google Scholar 

  37. A. Ye. Smygalina, Ph. D. Theses (Bauman Moscow State Tech. Univ., Moscow, 2018).

    Google Scholar 

  38. S. P. Medvedev, G. L. Agafonov, S. V. Khomik, and B. E. Gelfand, Combust. Flame 157, 1436 (2010).

    Article  CAS  Google Scholar 

  39. T. Weydahl, M. Poyyapakkam, M. Seljeskog, and N. E. L. Haugen, Int. J. Hydrogen Energy 36, 12025 (2011).

    Article  CAS  Google Scholar 

  40. C. Olm, I. G. Zsely, R. Palvolgyi, et al., Combust. Flame 161, 2219 (2014).

    Article  CAS  Google Scholar 

  41. A. A. Abagyan, E. O. Adamov, and E. V. Burlakov, in Proceedings of the IAEA International Conference on One Decade After Chernobyl: Nuclear Safety Aspects (Springer, Vienna, Austria, 1996), Report IAEA-J4-TC972, p. 46.

  42. S. K. Abramov, V. V. Azatyan, G. R. Baimuratova et al., Russ. J. Phys. Chem. B 4, 923 (2010).

    Article  Google Scholar 

  43. J. Grune, K. Sempert, H. Haberstroh, M. Kuznetsov, and T. Jordan, J. Loss Prevent. Process Ind. 26, 317 (2013).

    Article  CAS  Google Scholar 

  44. CHEMKIN-Pro 15112, Reaction Design, CK-TUT-10112-1112-UG-1 (San Diego, 2011).

  45. A. Burcat and B. Ruscic, Tech. Rep. ANL-05/20, TAE-960 (Argonne Natl. Labor., Tech.-Israel Inst. Technol., Chicago, IL, Tel-Aviv, 2005).

  46. B. E. Gel’fand, O. E. Popov, S. P. Medvedev, et al., Dokl. Akad. Nauk 330, 457 (1993)

    Google Scholar 

  47. B. Lewis and G. von Elbe, Combustion, Flames and Explosions of Gases (Academic, New York, 1961)

    Google Scholar 

  48. N. M. Kuznetsov, The Kinetics of Monomolecular Reactions (Nauka, Moscow 1982) [in Russian]

    Google Scholar 

  49. N. N. Semenov, Chemical Kinetics and Chain Reactions (Clarendon, Oxford, 1935)

    Google Scholar 

  50. S. P. Medvedev, G. L. Agafonov, and S. V. Khomik, Acta Astronaut. 126, 150 (2016). https://doi.org/10.1016/j.actaastro.2016.04.019

    Article  CAS  Google Scholar 

  51. A. D. Kiverin, Doctoral (Phys.-Math.) Dissertation (JIHT, Moscow, 2021).

  52. V. Alekseev, PhD Theses (Lunds Univ., Lund, Sweden, 2015).

    Google Scholar 

Download references

Funding

This work was supported by the Federal Research Center for Chemical Physics, Russian Academy of Sciences, state assignment no. 122040500073-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Tereza.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereza, A.M., Agafonov, G.L., Anderzhanov, E.K. et al. Numerical Simulation of Autoignition Characteristics of Lean Hydrogen–Air Mixtures. Russ. J. Phys. Chem. B 16, 686–692 (2022). https://doi.org/10.1134/S1990793122040297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122040297

Keywords:

Navigation