Skip to main content
Log in

Highly Filled Composite Materials Based on UHMWPE and a Mixture of Micron and Nanoscale Aluminum Particles

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Highly filled (up to 90 vol %) UHMWPE composites with Al of controlled dispersed composition (micro-, nanoparticles, and their mixtures) were obtained by the polymerization filling method. The use of a mixture of micro- and nano Al particles predominantly containing micron-sized particles allowed us to achieve a denser packing of heat-conductive particles in the polymer matrix and create more efficient heat-conductive paths in compressed specimens, in comparison with the composites containing only the micro- or nano Al particles. The thermal conductivity achieved with a mixture of nano/micro aluminum particles in the ratio 30/70 was 9.7 W/mK at 82 vol % degree of filling. The enhanced thermal conductivity of the materials goes together with high electrical insulating properties (σdc not higher than 10–9 S/cm) due to the presence on Al particles, in addition to thin oxide coating, also a coating of UHMWPE. The high thermal conductivity and electrical insulating properties of the obtained UHMWPE composites are combined with high strength properties under compression. At total aluminum concentrations up to 80 vol %, the pressed specimens do not collapse under compression, and have significantly enhanced modulus of elasticity under compression and strength at the yield point compared to UHMWPE. It is the combination of the UHMWPE matrix and the polymerization method for incorporation of fillers into it, including nanosized ones, that makes it possible to obtain highly filled composite materials with a high level of functional and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, and B. Chen, Prog. Polym. Sci. 59, 41 (2016),

    Article  CAS  Google Scholar 

  2. D. M. Bigg, in Thermal and Electrical Conductivity of Polymer Materials (Springer, Berlin, 1995), p. 1.

    Google Scholar 

  3. S. Zhang, X. Y. Cao, Y. M. Ma, Y. C. Ke, J. K. Zhang, and F. S. Wang, Express Polym. Lett., No. 5 (7), 581 (2011).

  4. W. Cheewawuttipong, D. Fuoka, S. Tanoue, H. Uematsu, and Y. Iemoto, Energy Proc. 34, 808 (2013).

    Article  CAS  Google Scholar 

  5. A. A. Boykov, V. V. Tcherdyntsev, and V. N. Gulbin, Compos. Mech. Comput. Appl. Int. J. 7, 261 (2016).

    Article  Google Scholar 

  6. L. A. Kostandov, N. S. Enikolopov, F. S. D’yachkovskii, et al., USSR Inventor’s Certificate No. 763379, Byull. Izobret., No. 34, US Patent No. 4241112 (1980).

  7. A. N. Zhigach, N. G. Berezkina, I. O. Leipunskii, et al., Bull. Russ. Acad. Sci.: Phys. 75, 1488 (2011).

    Article  CAS  Google Scholar 

  8. K. E. Strawhecker and E. Manias, Chem. Mater. 15, 844 (2003).

    Article  CAS  Google Scholar 

  9. I. L. Dubnikova, N. F. Kedrina, A. B. Solov’eva, et al., Polym. Sci. A 45, 281 (2003).

    Google Scholar 

  10. V. M. Egorov, E. M. Ivan’kova, V. A. Marikhin, L. P. Myasnikova, and A. A. Baulin, Polymer Sci., Ser. A 41, 1131 (1999).

    Google Scholar 

  11. B. Z. Jang, D. R. Uhlmann, and J. B. van der Sande, J. Appl. Polym. Sci. 29, 4377 (1984).

    Article  CAS  Google Scholar 

  12. N. G. Ryvkina, P. A. Nezhnyi, O. I. Kudinova, I. A. Chmutin, V. G. Grinev, and L. A. Novokshonova, Russ. J. Phys. Chem. B 13, 831 (2019).

    Article  CAS  Google Scholar 

  13. L. A. Novokshonova, O. I. Kudinova, A. A. Berlin, et al., RF Patent No. 2600110, Byull. Izobret., No. 29 (2016).

  14. S. L. Bazhenov, V. G. Grinev, O. I. Kudinova, and L. A. Novokshonova, Polym. Sci. A 52, 549 (2010).

    Article  Google Scholar 

  15. A. V. Zhuk, N. N. Knunyants, V. G. Oshmyan, V. A. Topolkaraev, and A. A. Berlin, J. Mater. Sci. 28, 4595 (1993).

    Article  CAS  Google Scholar 

  16. L. I. Dubnikova and V. G. Oshmyan, Polym. Sci. A 40, 525 (1998).

    Google Scholar 

  17. F. S. D’yachkovskii and L. A. Novokshonova, Russ. Chem. Rev. 53, 117 (1984).

    Article  Google Scholar 

  18. I. H. Tavman, J. Appl. Polym. Sci. 62, 2161 (1996).

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed under State Assignment no. 0082-2019-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Kudinova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudinova, O.I., Nezhnyi, P.A., Grinev, V.G. et al. Highly Filled Composite Materials Based on UHMWPE and a Mixture of Micron and Nanoscale Aluminum Particles. Russ. J. Phys. Chem. B 16, 764–771 (2022). https://doi.org/10.1134/S199079312204025X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312204025X

Keywords:

Navigation