Skip to main content
Log in

H/D Kinetic Solvent Isotope Effect in the Oxidation of Methyl Linoleate in Triton X-100 Micelles

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The effect of heavy water on the rate of methyl linoleate oxidation in Triton X-100 micelles is studied. It is established that the rate of oxidation in heavy water increases due to the exchange of hydroperoxide radicals \(({\text{HO}}_{2}^{ \bullet })\) for deuteroperoxide radicals \(({\text{DO}}_{2}^{ \bullet }),\) which leads to a decrease in the rate of chain termination. The formation of \({\text{DO}}_{2}^{ \bullet }\) is confirmed by the decrease in the inhibition coefficients by nitroxide radicals, and the propagation of the chain by the reaction of \({\text{DO}}_{2}^{ \bullet }\) with a molecule of methyl linoleate is confirmed by the decrease in the rate of oxidation in the presence of superoxide dismutase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. A. Roginskii, Kinet. Catal. 37, 488 (1996).

    CAS  Google Scholar 

  2. H. Yin, L. Xu, and N. A. Porter, Chem. Rev. 111, 5944 (2011).

    Article  CAS  Google Scholar 

  3. A. Panov, Mol. Biol. 52, 295 (2018).

    Article  CAS  Google Scholar 

  4. J. Poon, O. Zilka, and D. A. Pratt, J. Am. Chem. Soc. 142, 14331 (2020).

    Article  CAS  Google Scholar 

  5. S. V. Puchkov and Yu. V. Nepomnyashchikh, Russ. J. Phys. Chem. B 14, 278 (2020).

    Article  CAS  Google Scholar 

  6. I. V. Tikhonov, I. V. Moskalenko, E. M. Pliss, M. A. Fomich, A. V. Bekish, and V. V. Shmanai, Russ. J. Phys. Chem. B 11, 395 (2017).

    Article  CAS  Google Scholar 

  7. I. V. Moskalenko, I. V. Tikhonov, E. M. Pliss, M. A. Fomich, V. V. Shmanai, and A. I. Rusakov, Russ. J. Phys. Chem. B 12, 987 (2018).

    Article  CAS  Google Scholar 

  8. M. Soloviev, I. Moskalenko, and E. Pliss, React. Kinet. Mech. Catal. 127, 561 (2019).

    Article  CAS  Google Scholar 

  9. I. Pinchuk and D. Lichtenberg, Chem. Phys. Lipids 205, 42 (2017).

    Article  CAS  Google Scholar 

  10. A. Fulczyk, E. Lata, E. Talik, T. Kowalska, and M. Sajewicz, Front. Chem. 8, 541 (2020).

    Article  CAS  Google Scholar 

  11. V. Roginsky and T. Barsukova, Chem. Phys. Lipids 111, 87 (2001).

    Article  CAS  Google Scholar 

  12. B. H. J. Bielski, D. E. Cabelli, and R. L. Arudi, J. Phys. Chem. Ref. Data 14, 1041 (1985).

    Article  CAS  Google Scholar 

  13. A. K. Covington, M. Paabo, R. A. Robinson, and R. G. Bates, Anal. Chem. 40, 700 (1968).

    Article  CAS  Google Scholar 

  14. D. Loshadkin, V. Roginsky, and E. Pliss, Int. J. Chem. Kinet. 34, 162 (2002).

    Article  CAS  Google Scholar 

  15. Y. Wang, J. Xiao, T. O. Suzek, et al., Nucl. Acid Res. 40, D400 (2011).

    Article  Google Scholar 

  16. R. Amorati, A. Baschieri, G. Morroni, R. Gambino, and L. Valgimigli, Chem.-Eur. J. 22, 7924 (2016).

    Article  CAS  Google Scholar 

  17. M. Musialik, M. Kita, and G. Litwinienko, Org. Biomol. Chem. 6, 677 (2008).

    Article  CAS  Google Scholar 

  18. M. Assali, J. Rakovsky, O. Votava, and C. Fittschen, Int. J. Chem. Kinet. 52, 197 (2020).

    Article  CAS  Google Scholar 

  19. A. Baschieri, L. Valgimigli, S. Gabbanini, et al., J. Am. Chem. Soc. 140, 10354 (2018).

    Article  CAS  Google Scholar 

  20. K. A. Harrison, E. A. Haidasz, M. Griesser, and D. A. Pratt, Chem. Sci. 9, 6068 (2018).

    Article  CAS  Google Scholar 

  21. I. V. Tikhonov, E. M. Pliss, L. I. Borodin, T. A. Kuznetsova, and V. D. Sen’, Russ. Chem. Bull. 64, 2433 (2015).

    Article  CAS  Google Scholar 

  22. I. V. Tikhonov, E. M. Pliss, L. I. Borodin, and V. D. Sen’, Russ. J. Phys. Chem. B 11, 400 (2017).

    Article  CAS  Google Scholar 

  23. E. Pliss, M. Soloviev, V. Sen’, et al., React. Kinet. Mech. Catal. 132, 617 (2021).

    Article  CAS  Google Scholar 

  24. V. D. Sen, I. V. Tikhonov, L. I. Borodin, et al., J. Phys. Org. Chem. 28, 17 (2015).

    Article  CAS  Google Scholar 

  25. I. V. Tikhonov, L. I. Borodin, and E. M. Pliss, Russ. J. Phys. Chem. B 14, 910 (2020).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Professor E.M. Pliss for his useful discussion.

Funding

This study was supported by the Russian Science Foundation (grant no. 20-13-00148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Moskalenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskalenko, I.V., Tikhonov, I.V. H/D Kinetic Solvent Isotope Effect in the Oxidation of Methyl Linoleate in Triton X-100 Micelles. Russ. J. Phys. Chem. B 16, 602–605 (2022). https://doi.org/10.1134/S1990793122040121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122040121

Keywords:

Navigation