Skip to main content
Log in

Spatiotemporal Profiles of the Concentrations of Contaminants During Electrokinetic Remediation of Soils

  • CHEMICAL PHYSICS OF ECOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

An empirical mathematical method is developed for studying spatiotemporal profiles (STPs) of pollutant concentrations in soils in the process of their electrokinetic remediation (EKR). For the mathematical description of STP concentrations, it is proposed to use the basic monotonic exponential (or logistic) function, which has asymptotic properties simultaneously in spatial, x, and temporary t, coordinates, with the addition of individual corrective functions that take into account experimentally observed deviations from monotonicity (extrema, inflection points, etc.). In the trial approximation, the sum of two-dimensional Gaussian functions is used as such corrective functions. A general mathematical formula describing the STP is derived. To demonstrate the possibilities of the developed method, the published experimental data on the electrokinetic purification of soils from certain heavy metals are processed using this formula. It is established that the quality of the description of experimental data using the proposed formula increases during the transition from the initial stage of the EKR process to the intermediate and final stages, which indicates a high level of predictability of the results of the EKR analysis based on the developed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. A. Wuana and F. E. Okieimen, ISRN Ecology 2011, 1 (2011). https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  2. M. T. Alcántara, J. Gómez, M. Pazos, and M. A. Sanromán, Geoderma 173–174, 128 (2012). https://doi.org/10.1016/j.geoderma.2011.12.009

    Article  CAS  Google Scholar 

  3. S. Annamalai, M. Santhanam, M. Sundaram, and M. P. Curras, Chemosphere 117, 673 (2014). https://doi.org/10.1016/j.chemosphere.2014.10.023

    Article  CAS  PubMed  Google Scholar 

  4. D. Rosestolato, R. Bagatin, and S. Ferro, Chem. Eng. J. 264, 16 (2015). https://doi.org/10.1016/j.cej.2014.11.074

    Article  CAS  Google Scholar 

  5. Yee-Sern Ng, B. S. Gupta, and M. A. Hashim, Sep. Purif. Technol. 156, 403 (2015). https://doi.org/10.1016/j.seppur.2015.10.029

    Article  CAS  Google Scholar 

  6. I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, A. V. Bloshenko, I. P. Tikhonov, and A. M. Skryl’nikov, Russ. J. Phys. Chem. B 11, 543 (2017). https://doi.org/10.1134/S199079311704008X

    Article  CAS  Google Scholar 

  7. I. V. Kumpanenko, A. V. Roshchin, A. A. Berlin, and B. F. Myasoedov, Khim. Bezopasn. 1 (1), 42 (2017). https://doi.org/10.25514/CHS.2017.1.11430

    Article  Google Scholar 

  8. D. S. Schultz, J. Hazard. Mater. 55, 81 (1997). https://doi.org/10.1016/S0304-3894(97)00014-9

    Article  CAS  Google Scholar 

  9. A. P. Shapiro and R. F. Probsteln, Environ. Sci. Technol. 27, 283 (1993). https://doi.org/10.1021/es00039a007

    Article  CAS  Google Scholar 

  10. J. G. Ibanez, M. M. Singh, R. M. Pike, and Z. Szafran, J. Chem. Educ. 75, 634 (1998). https://doi.org/10.1021/ed075p634

    Article  CAS  Google Scholar 

  11. P. Tsai, C.-H. Huang, and E. Lee, Langmuir 27, 13481 (2011). https://doi.org/10.1021/la203240b

    Article  CAS  PubMed  Google Scholar 

  12. A. N. Alshawabkeh and Y. B. Acar, J. Environ. Sci. Health, Part A 27, 1835 (1992). https://doi.org/10.1080/10934529209375828

    Article  Google Scholar 

  13. Y. B. Acar and R. J. Galr, US Patent No. 5137608 (1992). http://www.freepatentsonline.com/5137608.pdf.

  14. J. M. Dzenitis, Environ. Sci. Technol. 31, 1191 (1997). https://doi.org/10.1021/es960707e

    Article  CAS  Google Scholar 

  15. N. J. Cherepy and D. Wildenschild, Environ. Sci. Technol. 37, 3024 (2003). https://doi.org/10.1021/es026095h

    Article  CAS  PubMed  Google Scholar 

  16. R. F. Probstein, P. C. Renaud, and A. P. Shapiro, US Patent 5074986 (1991). http://www.freepatentsonline.com/5074986.pdf.

  17. N. D. Mu’azu, M. H. Essa, and S. Lukman, in Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 2015, Paper CEST2015_01331.

  18. L. M. Ottosen, H. K. Hansen, S. Laursen, and A. Villumsen, Environ. Sci. Technol. 31, 1711 (1997). https://doi.org/10.1021/es9605883

    Article  CAS  Google Scholar 

  19. R. F. Probstein and R. E. Hicks, Science (Washington, DC, U. S.) 260, 498 (1993). https://doi.org/10.1126/science.260.5107.498

    Article  CAS  Google Scholar 

  20. W. Liu, J. Differ. Equat. 246, 428 (2009). https://doi.org/10.1016/j.jde.2008.09.010

    Article  Google Scholar 

  21. A. N. Alshawabkeh and Y. B. Acar, J. Geotech. Eng. 122, 186 (1996).https://doi.org/10.1061/ASCE0733-9410(1996)122:3(186)

  22. Y. B. Acar, A. N. Alshawabkeh, and R. A. Parker, Report No. EPA/600/R-97/054 (U. S. Environ. Protect. Agency, Cincinnati, OH, 1997).

  23. Y. B. Acar and A. N. Alshawabkeh, J. Geotech. Eng. 122, 173 (1996).https://doi.org/10.1061/ASCE0733-9410(1996)122:3(173)

  24. S.-O. Kim, S.-H. Moon, and K.-W. Kim, Water, Air, Soil Pollut. 125, 259 (2001). https://doi.org/10.1023/A:1005283001877

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out as part of the state task “Physics and Chemistry of New Nanostructured Systems and Composite Materials with Preset Properties” FFZE-2022-0002 (registration number 1021051101696-3-1-1.4.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kumpanenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumpanenko, I.V., Ivanova, N.A., Kovaleva, N.Y. et al. Spatiotemporal Profiles of the Concentrations of Contaminants During Electrokinetic Remediation of Soils. Russ. J. Phys. Chem. B 16, 738–746 (2022). https://doi.org/10.1134/S1990793122040091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122040091

Keywords:

Navigation