Skip to main content
Log in

Charge Transport in Biomimetic Models of Organic Neuromorphous Materials

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The process is modelled of charge transport in materials based on organic semiconductors and bioorganic molecules: dicyanvinyl oligothiophenes, porphine and quinone derivatives, which are considered as the base for creating molecular artificial neural networks (ANNs). The energy and electronic characteristics of these molecules are estimated by quantum chemical methods, and their parameters in the OPLS-AA force field are determined. The charge dynamics was modeled using the kinetic Monte Carlo method in systems of 1200 molecules balanced by the molecular dynamics method with an estimate of the tunneling constants according to the Marcus theory. Based on a comparison of the charge mobility in the simulated systems, possible ways of modifying the studied molecules to create ANNs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. P. Gromov, A. K. Chibisov, and M. V. Alfimov, Russ. J. Phys. Chem. B 15, 219 (2021). https://doi.org/10.1134/S1990793121020202

    Article  CAS  Google Scholar 

  2. S. Fukuzumi, T. Honda, and T. Kojima, Coord. Chem. Rev. 256, 2488 (2012). https://doi.org/10.1016/j.ccr.2012.01.011

    Article  CAS  Google Scholar 

  3. M. G. Gatty, A. Kahnt, L. J. Esdaile, and M. Hutin, J. Phys. Chem. B 119, 7598 (2015). https://doi.org/10.1021/jp5115064

    Article  CAS  Google Scholar 

  4. V. A. Ilatovskii, G. A. Ptitsyn, and G. G. Komissarov, Russ. J. Phys. Chem. B 2, 936 (2008).

    Article  Google Scholar 

  5. P. R. Rich, Faraday Discuss. Chem. Soc. 74, 349 (1982). https://doi.org/10.1039/DC9827400349

    Article  CAS  PubMed  Google Scholar 

  6. A. V. Lobanov and M. Ya. Mel’nikov, Russ. J. Phys. Chem. B 13, 565 (2019). https://doi.org/10.1134/S1990793119040110

    Article  CAS  Google Scholar 

  7. M. Schrader, C. Körner, C. Elschner, and D. Andrienko, J. Mat. Chem. 22, 22258 (2012). https://doi.org/10.1039/C2JM34837C

    Article  CAS  Google Scholar 

  8. C. Koerner, H. Ziehlke, R. Fitzner, et al., Adv. Polym. Sci. 272, 51 (2016). https://doi.org/10.1007/978-3-319-28338-8_3

    Article  CAS  Google Scholar 

  9. M. Schrader, R. Fitzner, M. Hein, and C. Elschner, J. Am. Chem. Soc. 134, 6052 (2012). https://doi.org/10.1021/ja300851q

    Article  CAS  PubMed  Google Scholar 

  10. P. M. Krasilnikov, Biophys. J. 59, 52 (2014). https://doi.org/10.1134/S0006350914010059

    Article  CAS  Google Scholar 

  11. M. Choi, S. Shin, and V. L. Davidson, Biochemistry 51, 6942 (2012). https://doi.org/10.1021/bi300817d

    Article  CAS  PubMed  Google Scholar 

  12. Yu. A. Kruglyak, Russ. J. Phys. Chem. A 88, 1826 (2014). https://doi.org/10.1134/S0036024414110119

    Article  CAS  Google Scholar 

  13. A. Painelli and A. Girlando, J. Chem. Phys. 84, 5655 (1986). https://doi.org/10.1063/1.449926

    Article  CAS  Google Scholar 

  14. R. A. Marcus, Rev. Mod. Phys. 65, 600 (1993). https://doi.org/10.1103/RevModPhys.65.599

    Article  Google Scholar 

  15. A. Troisi and G. Orlandi, Phys. Rev. Lett. 96, 086601 (2006). https://doi.org/10.1103/PhysRevLett.96.086601

    Article  CAS  PubMed  Google Scholar 

  16. J.-L. Brédas, D. Beljonne, V. Coropceanu, et al., Chem. Rev. 104, 4971 (2004). https://doi.org/10.1021/cr040084k

    Article  CAS  PubMed  Google Scholar 

  17. S. McKechnie, G. H. Booth, A. J. Cohen, et al., J. Chem. Phys. 142, 194114 (2015). https://doi.org/10.1063/1.4921037

    Article  CAS  PubMed  Google Scholar 

  18. All-Atom Automatic OPLS-AA Topology Generator TPPMKTOP. http://erg.biophys.msu.ru/tpp/.

  19. V. Ruhle, C. Junghans, A. Lukyanov, et al., J. Chem. Theory Comput. 5, 3211 (2009). https://doi.org/10.1021/ct900369w

    Article  CAS  PubMed  Google Scholar 

  20. V. Ruhle, A. Lukyanov, F. May, et al., J. Chem. Theory Comput. 7, 3335 (2011). https://doi.org/10.1021/ct200388s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, Weinheim, 2011).

    Book  Google Scholar 

  22. J. Kirkpatrick, Int. J. Quant. Chem. 108, 51 (2007). https://doi.org/10.1002/qua.21378

    Article  CAS  Google Scholar 

  23. R. Fitzner, E. Reinold, A. Mishra, et al., Adv. Funct. Mater. 21, 897 (2011). https://doi.org/10.1002/adfm.201001639

    Article  CAS  Google Scholar 

  24. X. Huang, K. Nakanishi, and N. Berova, Chirality 12, 237 (2000). https://doi.org/10.1002/(SICI)1520-636X(2000)12:4<237::AIDCHIR10>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  25. O. Ostroverkhova, Chem. Rev. 116, 13279 (2016). https://doi.org/10.1021/acs.chemrev.6b00127

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was carried out as part of the Strategic Academic Leadership Program of the State University of Nizhny Novgorod, “Priority 2030” (project H-473-99).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Savintseva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savintseva, L.A., Avdoshin, A.A. & Ignatov, S.K. Charge Transport in Biomimetic Models of Organic Neuromorphous Materials. Russ. J. Phys. Chem. B 16, 445–454 (2022). https://doi.org/10.1134/S1990793122030216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122030216

Keywords:

Navigation