Skip to main content
Log in

Excited State Dynamics of CH3CHOO Criegee Intermediates in the Upper Atmosphere of the Earth

  • CHEMICAL PHYSICS OF ATMOSPHERIC PHENOMENA
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Carbonyl oxides, or Criegee intermediates, play an important role in many physicochemical processes occurring in the Earth’s atmosphere. Criegee intermediates are chemically active compounds that easily react with other atmospheric components, promoting the formation of OH and CH3 radicals, toxic compounds of nitrogen, and various acids. Traditionally, the literature considers reactions involving only those carbonyl oxides that are the most stable in the troposphere under the standard atmospheric conditions. In this study, it is shown that in the mesosphere and ionosphere, where the total concentration of molecules is low and the intensity of UV radiation and the number of free electrons are high, reactions involving electronically excited states of the Criegee intermediates CH3CHOO play a significant role. In this case, we should take into account the features of the decomposition of all isomers of the CH3CHOO molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Criegee and G. Wenner, Just. Lieb. Ann. Chem. 564, 9 (1949).

    Article  CAS  Google Scholar 

  2. M. Khan, C. Percival, R. Caravan, et al., Environ. Sci.: Proces. Impacts 20, 437 (2018).

    CAS  Google Scholar 

  3. C. A. Taatjes, M. A. H. Khan, A. J. Eskola, et al., Environ. Sci. Technol. 53, 1245 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. O. Welz, A. J. Eskola, L. Sheps, et al., Angew. Chem. Int. Ed. 53, 4547 (2014).

    Article  CAS  Google Scholar 

  5. R. Chhantyal-Pun, M. R. McGillen, J. M. Beames, et al., Angew. Chem. Int. Ed. 56, 9044 (2017).

    Article  CAS  Google Scholar 

  6. C. A. Taatjes, O. Welz, A. J. Eskola, et al., Science (Washington, DC, U. S.) 340, 177 (2013).

    Article  CAS  Google Scholar 

  7. Yu. A. Dyakov, S. O. Adamson, P. K. Wang, A. S. Vetchinkin, G. V. Golubkov, I. I. Morozov, S. Y. Umanskii, Y. A. Chaikina, and M. G. Golubkov, Russ. J. Phys. Chem. B 15, 782 (2021).

    Article  CAS  Google Scholar 

  8. C. A. Taatjes, D. E. Shallcross, and C. J. Percival, Phys. Chem. Chem. Phys. 16, 1704 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. J. T. Herron, R. I. Martinez, and R. E. Huie, Int. J. Chem. Kinet. 14, 201 (1982).

    Article  CAS  Google Scholar 

  10. W. Chao, J. T. Hsieh, C. H. Chang, et al., Science (Washington, DC, U. S.) 347, 751 (2015).

    Article  CAS  Google Scholar 

  11. B. Long, J. L. Bao, and D. G. Truhlar, J. Am. Chem. Soc. 138, 14409 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. L. Sheps, A. M. Scully, and K. Au, Phys. Chem. Chem. Phys. 16, 26701 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. H. Levy, Science (Washington, DC, U. S.) 173, 141 (1971).

    Article  CAS  Google Scholar 

  14. X. H. Wang and J. M. Bowman, J. Phys. Chem. Lett. 7, 3359 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. N. M. Kidwell, H. W. Li, X. H. Wang, et al., Nat. Chem. 8, 509 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Y. Fang, F. Liu, V. P. Barber, et al., J. Chem. Phys. 144, 061102 (2016).

    Article  PubMed  CAS  Google Scholar 

  17. J. Lelieveld, F. Dentener, W. Peters, et al., Atmos. Chem. Phys. 4, 2337 (2004).

    Article  CAS  Google Scholar 

  18. M. Kanakidou, J. H. Seinfeld, S. N. Pandis, et al., Atmos. Chem. Phys. 5, 1053 (2005).

    Article  CAS  Google Scholar 

  19. M. Hallquist, J. C. Wenger, U. Baltensperger, et al., Atmos. Chem. Phys. 9, 5155 (2009).

    Article  CAS  Google Scholar 

  20. E. S. Foreman, K. M. Kapnas, and C. Murray, Angew. Chem. Int. Ed. 55, 10419 (2016).

    Article  CAS  Google Scholar 

  21. L. Vereecken, H. Harder, and A. Novelli, Phys. Chem. Chem. Phys. 14, 14682 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. M. Sharifi, F. Kong, S. L. Chin, et al., J. Phys. Chem. A 111, 9405 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Z. Wang, Y. A. Dyakov, and Y. Bu, J. Phys. Chem. A 123, 1085 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Yu. A. Dyakov, A. A. Puzankov, S. O. Adamson, G. V. Golubkov, I. I. Morozov, O. A. Olkhov, V. L. Shapovalov, D. V. Shestakov, and M. G. Golubkov, Russ. J. Phys. Chem. B 14, 728 (2020).

    Article  CAS  Google Scholar 

  25. Q. Q. Wang, Y. A. Dyakov, D. Wu, et al., Chem. Phys. Lett. 586, 21 (2013).

    Article  CAS  Google Scholar 

  26. H. Li, Y. Fang, N. M. Kidwell, et al., J. Phys. Chem. A 119, 8328 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. R. L. Mauldin, T. Berndt, and M. Sipila, Nature (London, U.K.) 488, 193 (2012).

    Article  CAS  Google Scholar 

  28. Yu. A. Dyakov, S. O. Adamson, P. K. Wang, G. V. Golub-kov, O. A. Olkhov, V. D. Peskov, I. D. Rodionov, I. P. Rodionova, A. I. Rodionov, V. L. Shapovalov, D. V. Shestakov, and M. G. Golubkov, Russ. J. Phys. Chem. B 15, 559 (2021).

    Article  CAS  Google Scholar 

  29. T. L. Nguyen, L. McCaslin, M. C. McCarthy, et al., J. Chem. Phys. 145, 131102 (2016).

    Article  PubMed  CAS  Google Scholar 

  30. A. M. Mebel, T. S. Zyubina, Y. A. Dyakov, et al., Int. J. Quant. Chem. 102, 506 (2005).

    Article  CAS  Google Scholar 

  31. T. S. Zyubina, Y. A. Dyakov, S. H. Lin, et al., J. Chem. Phys. 123, 134320 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. X. H. Zhou, Y. Q. Liu, W. R. Dong, et al., J. Phys. Chem. Lett. 10, 4817 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. G. V. Golubkov, T. A. Maslov, V. L. Bychkov, O. P. Borchevkina, S. O. Adamson, Yu. A. Dyakov, A. A. Lushnikov, and M. G. Golubkov, Russ. J. Phys. Chem. B 14, 853 (2020).

    Article  CAS  Google Scholar 

  34. V. V. Kuverova, S. O. Adamson, A. A. Berlin, et al., Adv. Space Res. 64, 1876 (2019).

    Article  CAS  Google Scholar 

  35. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Dokl. Phys. 57, 461 (2012).

    Article  CAS  Google Scholar 

  36. G. V. Golubkov, M. I. Manzhelii, A. A. Berlin, et al., Atmosphere 11, 650 (2020).

    Article  CAS  Google Scholar 

  37. G. V. Golubkov, M. I. Manzhelii, A. A. Berlin, N. N. Bezuglov, A. N. Klyucharev, O. P. Borchevkina, S. O. Adamson, Yu. A. Dyakov, I. V. Karpov, I. I. Morozov, L. V. Eppelbaum, and M. G. Golubkov, Russ. J. Phys. Chem. B 15, 362 (2021).

    Article  CAS  Google Scholar 

  38. V. Gerard, C. Galopin, E. Ay, et al., Food Chem. 359, 129949 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. C. K. Ni and Y. T. Lee, Int. Rev. Phys. Chem. 23, 187 (2004).

    Article  CAS  Google Scholar 

  40. C. M. Tseng, Y. T. Lee, and C. K. Ni, J. Chem. Phys. 121, 2459 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. C. K. Ni, C. M. Tseng, M. F. Lin, et al., J. Phys. Chem. B 111, 12631 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. M. F. Lin, C. M. Tseng, Y. A. Dyakov, et al., J. Chem. Phys. 126, 241104 (2007).

    Article  PubMed  CAS  Google Scholar 

  43. Y. A. Dyakov, Y. C. Ho, W. H. Hsu, et al., Chem. Phys. 515, 543 (2018).

    Article  CAS  Google Scholar 

  44. Y. A. Dyakov, S. Toliautas, L. I. Trakhtenberg, et al., Chem. Phys. 515, 672 (2018).

    Article  CAS  Google Scholar 

  45. A. L. Sobolewski and W. Domcke, Phys. Chem. Chem. Phys. 8, 3410 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Y. L. Yang, Y. C. Ho, Y. A. Dyakov, et al., Phys. Chem. Chem. Phys. 15, 7182 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. C. M. Tseng, Y. A. Dyakov, H. C. Huang, et al., J. Chem. Phys. 133, 074307 (2010).

    Article  PubMed  CAS  Google Scholar 

  48. H. C. Hsu, M. T. Tsai, Y. A. Dyakov, et al., Int. Rev. Phys. Chem. 31, 201 (2012).

    Article  CAS  Google Scholar 

  49. H. J. Werner, P. J. Knowles, G. Knizia, et al., Wiley Int. Rev. Comp. Mol. Sci. 2, 242 (2012).

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out in the framework of State Assignment of the Ministry of Science and Higher Education of the Russian Federation (registration number 122040500060–4), with the financial support of the Ministry of Science and Technology of Taiwan (MOST grants 109-2111-M-001-001 and 110-2111-M-001-005) and by Higher Education Sprout Project, Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University (NCKU), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Dyakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyakov, Y.A., Adamson, S.O., Wang, P.K. et al. Excited State Dynamics of CH3CHOO Criegee Intermediates in the Upper Atmosphere of the Earth. Russ. J. Phys. Chem. B 16, 543–548 (2022). https://doi.org/10.1134/S1990793122030149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122030149

Keywords:

Navigation