Abstract
The results of studies on the extraction of vanadium, nickel, and cobalt compounds from ash residue obtained in the process of the filtration combustion of charcoal and brown coal with subsequent hydrometallurgical extraction of metals from ash residues are presented. Coals with metal salts preliminarily deposited on them are used for the research. The regularities of gasification of the studied coals (temperatures and combustion rates) are studied and it is shown that the heat of combustion of gaseous products for both types of coals is 4.3–4.5 MJ/m3. Using X-ray phase analysis, the crystal structures of metal compounds in ash residues are determined. Metal compounds are leached from the ash residue with water, acids, hydrogen peroxide, and their mixtures. It is established that vanadium compounds almost completely turn into a solution during leaching with acid solutions. At the same time, the maximum degree of extraction of nickel and cobalt from the ash residues of gasification does not exceed, respectively, 59 and 61% for charcoal and 40 and 28% for brown coal. This is due to the fact that nickel and cobalt compounds are present in ash residues, which are resistant to the action of aqueous solutions of acids and other oxidizing agents.




Similar content being viewed by others
REFERENCES
A. R. Chakhmouradian and F. Wall, Elements 8, 333 (2012). https://doi.org/10.2113/gselements.8.5.333
J. Demol, E. Ho, K. Soldenhoff, et al., Hydrometallurgy 188, 123 (2019). https://doi.org/10.1016/j.hydromet.2019.05.015
S. M. Jowitt, T. T. Werner, Z. Weng, et al., Curr. Opin. Green Sustain. Chem. 13, 1 (2018). https://doi.org/10.1016/j.cogsc.2018.02.008
E. A. Salgansky, M. V. Tsvetkov, Kh. M. Kadiev, M. Ya. Visaliev, and L. A. Zekel’, Russ. J. Appl. Chem. 92, 1616 (2019). https://doi.org/10.1134/S1070427219120024
Yu. I. Isaeva, A. M. Elokhov, S. A. Denisova, and O. S. Kudryashova, Russ. J. Phys. Chem. A 94, 1346 (2020)
V. F. Gromov, M. I. Ikim, G. N. Gerasimov, and L. I. Trakhtenberg, Russ. J. Phys. Chem. B 15, 140 (2021). https://doi.org/10.1134/S1990793121010036
M. Touré, J. Chamieh, G. Arrachart, et al., Sep. Purif. Technol. 251, 117330 (2020). https://doi.org/10.1016/j.seppur.2020.117330
Q. Tan, J. Li, and X. Zeng, Crit. Rev. Environ. Sci. Technol. 45, 749 (2015). https://doi.org/10.1080/10643389.2014.900240
Y. Lu and Z. Xu, Resour. Conserv. Recycl. 113, 28 (2016). https://doi.org/10.1016/j.resconrec.2016.05.007
T. Hennebel, N. Boon, S. Maes, et al., New Biotechnol. 32, 121 (2015). https://doi.org/10.1016/j.nbt.2013.08.004
J. C. Lee and B. D. Pandey, Waste Manag. 32, 3 (2012). https://doi.org/10.1016/j.wasman.2011.08.010
N. Ripoll, E. Salgansky, and M. Toledo, Int. J. Heat Mass Transfer. 177, 121472 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121472
B. S. Seplyarskii, N. I. Abzalov, R. A. Kochetkov, and T. G. Lisina, Russ. J. Phys. Chem. B 15, 242 (2021). https://doi.org/10.1134/S199079312102010X
M. Fierro, P. Requena, E. Salgansky, et al., Chem. Eng. J. 425, 130178 (2021). https://doi.org/10.1016/j.cej.2021.130178
D. V. Antonov, T. R. Valiullin, R. I. Iegorov, et al., Energy 119, 1152 (2017). https://doi.org/10.1016/j.energy.2016.11.074
Ya. Solomatin, N. E. Shlegel, and P. A. Strizhak, Fuel 255, 115751 (2019). https://doi.org/10.1016/j.fuel.2019.115751
G. E. Zaslavskii, D. B. Lempert, and G. B. Manelis, Khim. Fiz. 33 (1), 14 (2014). https://doi.org/10.7868/S0207401X14010142
N. A. Lutsenko and E. A. Salgansky, Int. J. Multiphas. Flow 140, 103670 (2021). https://doi.org/10.1016/j.ijmultiphaseflow.2021.103670
N. Evseev, M. Ziatdinov, V. Romandin, et al., Processes 8, 1056 (2020). https://doi.org/10.3390/pr8091056
E. A. Salgansky, A. Y. Zaichenko, D. N. Podlesniy, et al., Int. J. Hydrogen Energy 45, 17270 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.177
S. V. Kostin, P. M. Krishenik, and S. A. Rogachev, Russ. J. Phys. Chem. B 15, 68 (2021). https://doi.org/10.1134/S1990793121010073
N. A. Lutsenko, Combust. Theory Modell. 22, 359 (2018). https://doi.org/10.1080/13647830.2017.1406617
D. Podlesniy, A. Zaichenko, M. Tsvetkov, et al., Fuel 298, 120862 (2021). https://doi.org/10.1016/j.fuel.2021.120862
M. Ya. Shpirt and V. V. Rashevskii, Microelements of Fossil Fuels (Kuchkovo Pole, Moscow, 2010) [in Russian].
T. P. Sirina, T. I. Krasnenko, G. V. Solov’ev, et al., Vestn. YuUrGU, Khim. 5 (1), 4 (2013).
S. N. Khadzhiev and M. Ya. Shpirt, Microelements in Oils and Products of their Processing (Nauka, Moscow, 2012) [in Russian].
A. S. Shapovalov, A. V. Polishchuk, D. P. Chernykh, et al., RF Patent No. 2677197, Byull. Izobret., Polez. Modeli, No. 2 (2019).
A. A. Golubev and Yu. A. Gudim, RF Patent No. 2336355, Byull. Izobret. No. 29 (2008).
Kh. M. Kadiev, M. Ya. Visaliev, L. A. Zekel’, and M. Ya. Shpirt, Solid Fuel Chem. 52, 392 (2018). https://doi.org/10.3103/S0361521918060058
M. Ya. Visaliev, Cand. Sci. (Chem.) Dissertation (Topchiev Inst. Petrochem. Synth. RAS, Moscow, 2014).
A. G. Chmielewski, T. S. Urbanski, and W. Migdal, Hydrometallurgy 45, 333 (1997). https://doi.org/10.1016/S0304-386X(96)00090-4
M. Ya. Visaliev, M. Ya. Shpirt, Kh. M. Kadiev, V. I. Dvorkin, E. E. Magomadov, and S. N. Khadzhiev, Solid Fuel Chem. 46, 100 (2012)
I. Tsuboi, S. Kasai, E. Kunugita, et al., J. Chem. Eng. Jpn. 24, 15 (1991). https://doi.org/10.1252/jcej.24.15
M. V. Tsygankova, V. I. Bukin, E. I. Lysakova, et al., Tsvetn. Met., No. 1, 21 (2011).
G. A. Lukomskaya, K. Z. Shakirov, L. I. Petrova, et al., RF Patent No. 2334800, Byull. Izobret., No. 27 (2008).
R. Schemel, D. Rodriguez, and R. Salazar, US Patent No. 4539186 (1985).
Yu. L. Mikhailov, Cand. Sci. (Chem.) Dissertation (Omsk. State Univ., Omsk, 2001).
A. M. Tereza, S. P. Medvedev, and V. N. Smirnov, Acta Astronaut. 176, 653 (2020). https://doi.org/10.1016/j.actaastro.2020.03.045
A. M. Tereza, G. L. Agafonov, A. S. Betev, and S. P. Medvedev, Russ. J. Phys. Chem. B 14, 951 (2020). https://doi.org/10.1134/S1990793120060299
Funding
The study was financially supported by the Russian Foundation for Basic Research as part of scientific project no. 18-29-24029-mk and state order no. 0089-2019-0018 (registration number АААА-А19-119-022690098-3). Part of the analyses was carried out on the equipment of the Analytical Center for Collective Use of the Institute of Problems of Chemical Physics, Russian Academy of Sciences and Institute of Petrochemical Synthesis, Russian Academy of Sciences.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Salgansky, E.A., Kislov, V.M., Tsvetkov, M.V. et al. Energy Production and Recovery of Rare Metals from Ash Residue During Coal Filtration Combustion. Russ. J. Phys. Chem. B 16, 268–277 (2022). https://doi.org/10.1134/S1990793122020105
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990793122020105


