Skip to main content

Advertisement

Log in

Energy Production and Recovery of Rare Metals from Ash Residue During Coal Filtration Combustion

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The results of studies on the extraction of vanadium, nickel, and cobalt compounds from ash residue obtained in the process of the filtration combustion of charcoal and brown coal with subsequent hydrometallurgical extraction of metals from ash residues are presented. Coals with metal salts preliminarily deposited on them are used for the research. The regularities of gasification of the studied coals (temperatures and combustion rates) are studied and it is shown that the heat of combustion of gaseous products for both types of coals is 4.3–4.5 MJ/m3. Using X-ray phase analysis, the crystal structures of metal compounds in ash residues are determined. Metal compounds are leached from the ash residue with water, acids, hydrogen peroxide, and their mixtures. It is established that vanadium compounds almost completely turn into a solution during leaching with acid solutions. At the same time, the maximum degree of extraction of nickel and cobalt from the ash residues of gasification does not exceed, respectively, 59 and 61% for charcoal and 40 and 28% for brown coal. This is due to the fact that nickel and cobalt compounds are present in ash residues, which are resistant to the action of aqueous solutions of acids and other oxidizing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. R. Chakhmouradian and F. Wall, Elements 8, 333 (2012). https://doi.org/10.2113/gselements.8.5.333

    Article  CAS  Google Scholar 

  2. J. Demol, E. Ho, K. Soldenhoff, et al., Hydrometallurgy 188, 123 (2019). https://doi.org/10.1016/j.hydromet.2019.05.015

    Article  CAS  Google Scholar 

  3. S. M. Jowitt, T. T. Werner, Z. Weng, et al., Curr. Opin. Green Sustain. Chem. 13, 1 (2018). https://doi.org/10.1016/j.cogsc.2018.02.008

    Article  Google Scholar 

  4. E. A. Salgansky, M. V. Tsvetkov, Kh. M. Kadiev, M. Ya. Visaliev, and L. A. Zekel’, Russ. J. Appl. Chem. 92, 1616 (2019). https://doi.org/10.1134/S1070427219120024

    Article  CAS  Google Scholar 

  5. Yu. I. Isaeva, A. M. Elokhov, S. A. Denisova, and O. S. Kudryashova, Russ. J. Phys. Chem. A 94, 1346 (2020)

    Article  CAS  Google Scholar 

  6. V. F. Gromov, M. I. Ikim, G. N. Gerasimov, and L. I. Trakhtenberg, Russ. J. Phys. Chem. B 15, 140 (2021). https://doi.org/10.1134/S1990793121010036

    Article  CAS  Google Scholar 

  7. M. Touré, J. Chamieh, G. Arrachart, et al., Sep. Purif. Technol. 251, 117330 (2020). https://doi.org/10.1016/j.seppur.2020.117330

    Article  CAS  Google Scholar 

  8. Q. Tan, J. Li, and X. Zeng, Crit. Rev. Environ. Sci. Technol. 45, 749 (2015). https://doi.org/10.1080/10643389.2014.900240

    Article  CAS  Google Scholar 

  9. Y. Lu and Z. Xu, Resour. Conserv. Recycl. 113, 28 (2016). https://doi.org/10.1016/j.resconrec.2016.05.007

    Article  Google Scholar 

  10. T. Hennebel, N. Boon, S. Maes, et al., New Biotechnol. 32, 121 (2015). https://doi.org/10.1016/j.nbt.2013.08.004

    Article  CAS  Google Scholar 

  11. J. C. Lee and B. D. Pandey, Waste Manag. 32, 3 (2012). https://doi.org/10.1016/j.wasman.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  12. N. Ripoll, E. Salgansky, and M. Toledo, Int. J. Heat Mass Transfer. 177, 121472 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121472

    Article  CAS  Google Scholar 

  13. B. S. Seplyarskii, N. I. Abzalov, R. A. Kochetkov, and T. G. Lisina, Russ. J. Phys. Chem. B 15, 242 (2021). https://doi.org/10.1134/S199079312102010X

    Article  CAS  Google Scholar 

  14. M. Fierro, P. Requena, E. Salgansky, et al., Chem. Eng. J. 425, 130178 (2021). https://doi.org/10.1016/j.cej.2021.130178

    Article  CAS  Google Scholar 

  15. D. V. Antonov, T. R. Valiullin, R. I. Iegorov, et al., Energy 119, 1152 (2017). https://doi.org/10.1016/j.energy.2016.11.074

    Article  CAS  Google Scholar 

  16. Ya. Solomatin, N. E. Shlegel, and P. A. Strizhak, Fuel 255, 115751 (2019). https://doi.org/10.1016/j.fuel.2019.115751

    Article  CAS  Google Scholar 

  17. G. E. Zaslavskii, D. B. Lempert, and G. B. Manelis, Khim. Fiz. 33 (1), 14 (2014). https://doi.org/10.7868/S0207401X14010142

    Article  CAS  Google Scholar 

  18. N. A. Lutsenko and E. A. Salgansky, Int. J. Multiphas. Flow 140, 103670 (2021). https://doi.org/10.1016/j.ijmultiphaseflow.2021.103670

    Article  CAS  Google Scholar 

  19. N. Evseev, M. Ziatdinov, V. Romandin, et al., Processes 8, 1056 (2020). https://doi.org/10.3390/pr8091056

    Article  CAS  Google Scholar 

  20. E. A. Salgansky, A. Y. Zaichenko, D. N. Podlesniy, et al., Int. J. Hydrogen Energy 45, 17270 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.177

    Article  CAS  Google Scholar 

  21. S. V. Kostin, P. M. Krishenik, and S. A. Rogachev, Russ. J. Phys. Chem. B 15, 68 (2021). https://doi.org/10.1134/S1990793121010073

    Article  CAS  Google Scholar 

  22. N. A. Lutsenko, Combust. Theory Modell. 22, 359 (2018). https://doi.org/10.1080/13647830.2017.1406617

    Article  CAS  Google Scholar 

  23. D. Podlesniy, A. Zaichenko, M. Tsvetkov, et al., Fuel 298, 120862 (2021). https://doi.org/10.1016/j.fuel.2021.120862

    Article  CAS  Google Scholar 

  24. M. Ya. Shpirt and V. V. Rashevskii, Microelements of Fossil Fuels (Kuchkovo Pole, Moscow, 2010) [in Russian].

    Google Scholar 

  25. T. P. Sirina, T. I. Krasnenko, G. V. Solov’ev, et al., Vestn. YuUrGU, Khim. 5 (1), 4 (2013).

    Google Scholar 

  26. S. N. Khadzhiev and M. Ya. Shpirt, Microelements in Oils and Products of their Processing (Nauka, Moscow, 2012) [in Russian].

    Google Scholar 

  27. A. S. Shapovalov, A. V. Polishchuk, D. P. Chernykh, et al., RF Patent No. 2677197, Byull. Izobret., Polez. Modeli, No. 2 (2019).

  28. A. A. Golubev and Yu. A. Gudim, RF Patent No. 2336355, Byull. Izobret. No. 29 (2008).

  29. Kh. M. Kadiev, M. Ya. Visaliev, L. A. Zekel’, and M. Ya. Shpirt, Solid Fuel Chem. 52, 392 (2018). https://doi.org/10.3103/S0361521918060058

    Article  CAS  Google Scholar 

  30. M. Ya. Visaliev, Cand. Sci. (Chem.) Dissertation (Topchiev Inst. Petrochem. Synth. RAS, Moscow, 2014).

  31. A. G. Chmielewski, T. S. Urbanski, and W. Migdal, Hydrometallurgy 45, 333 (1997). https://doi.org/10.1016/S0304-386X(96)00090-4

    Article  CAS  Google Scholar 

  32. M. Ya. Visaliev, M. Ya. Shpirt, Kh. M. Kadiev, V. I. Dvorkin, E. E. Magomadov, and S. N. Khadzhiev, Solid Fuel Chem. 46, 100 (2012)

    Article  CAS  Google Scholar 

  33. I. Tsuboi, S. Kasai, E. Kunugita, et al., J. Chem. Eng. Jpn. 24, 15 (1991). https://doi.org/10.1252/jcej.24.15

    Article  CAS  Google Scholar 

  34. M. V. Tsygankova, V. I. Bukin, E. I. Lysakova, et al., Tsvetn. Met., No. 1, 21 (2011).

  35. G. A. Lukomskaya, K. Z. Shakirov, L. I. Petrova, et al., RF Patent No. 2334800, Byull. Izobret., No. 27 (2008).

  36. R. Schemel, D. Rodriguez, and R. Salazar, US Patent No. 4539186 (1985).

  37. Yu. L. Mikhailov, Cand. Sci. (Chem.) Dissertation (Omsk. State Univ., Omsk, 2001).

  38. A. M. Tereza, S. P. Medvedev, and V. N. Smirnov, Acta Astronaut. 176, 653 (2020). https://doi.org/10.1016/j.actaastro.2020.03.045

    Article  CAS  Google Scholar 

  39. A. M. Tereza, G. L. Agafonov, A. S. Betev, and S. P. Medvedev, Russ. J. Phys. Chem. B 14, 951 (2020). https://doi.org/10.1134/S1990793120060299

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research as part of scientific project no. 18-29-24029-mk and state order no. 0089-2019-0018 (registration number АААА-А19-119-022690098-3). Part of the analyses was carried out on the equipment of the Analytical Center for Collective Use of the Institute of Problems of Chemical Physics, Russian Academy of Sciences and Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tsvetkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgansky, E.A., Kislov, V.M., Tsvetkov, M.V. et al. Energy Production and Recovery of Rare Metals from Ash Residue During Coal Filtration Combustion. Russ. J. Phys. Chem. B 16, 268–277 (2022). https://doi.org/10.1134/S1990793122020105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122020105

Keywords: