Skip to main content
Log in

Formation of the Ti2Alc Max-Phase in a Hydride Cycle From a Mixture of Titanium and Aluminum Carbohydride Powders

  • PHYSICAL METHODS FOR STUDYING CHEMICAL REACTIONS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The creation and development of new methods and technologies for obtaining MAX-phases, promising materials based on oxygen-free ceramics, which are in demand in modern materials science as structural materials, is an urgent task. The existing methods of obtaining them are rather complicated, energy-intensive, and multistage. It is of scientific and practical interest to develop viable commercial proposals that cost less and make it possible to manufacture MAX-phases in larger quantities. This paper presents the results of studies of the processes of the formation of the Ti2AlC MAX-phase in the hydride cycle (HC) using titanium carbohydrides TiC0.45H1.07–1.17 (the content of H2 is 1.97–2.17 wt %) with an HCP structure and TiC0.5H0.22–0.73 (the content of H2 is 0.44–1.48 wt %) with an FCC structure as the initial components The reaction TiC0.45–0.5H0.22–1.17 + 0.5Al → Ti2AlC + H2↑ is studied. The task of this study is to establish the effect of temperatures and the heating time on the phase composition and structure of the Ti2AlC MAX-phase. For the certification of samples, the following set of analysis methods is used: chemical, differential thermal, and X-ray phase. The microstructure of the samples is investigated on the scanning electron microscope SEM Prisma E. As a result of the research on the HC, a single-phase Ti2AlC MAX-phase is synthesized (a = 3.0553 Å, c = 13.6459 Å, c/a = 4.466, symmetry group P63/mmc). The Ti2AlC MAX-phase is formed in the HC by the solid-phase mechanism, in one technological stage, during heating at 1000°С for 0.5–1 h. The advantages of the HC method in the synthesis of the Ti2AlC MAX-phases regarding traditional methods, which allow us to simplify the technological process, reduce energy consumption, and improve quality, are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. W. Barsoum, Am. Sci. 89, 336 (2000).

    Google Scholar 

  2. M. Naguib, O. Mashtalir, J. Carle, V. Presser, Jun Lu, et al., ACS Nano 6, 1322 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. M. W. Barsoum, Prog. Solid State Chem. 28, 201 (2000).

    Article  CAS  Google Scholar 

  4. M. W. Barsoum, M. Ali, and T. El-Raghy, J. Metall. Mater. Trans., No. 31, 1857 (2000).

  5. C. N. Rao, K. S. Subrahmanyam, H. S. Matte, et al., Sci. Technol. Adv. Mater. 11, 054502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Y. Gogotsi, ACS Nano 13, 8491 (2019). www.acsnano.org.

    Article  CAS  PubMed  Google Scholar 

  7. I. L. Shabalin, Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokryt., No. 4, 73 (2018). https://doi.org/10.17073/1997-308X-2018-4-73-81

  8. Lu Chengjie, Sun Liangbo, Zhang Jie, et al., Ceram. Int. 43, 8579 (2017).

    Article  CAS  Google Scholar 

  9. W. B. Zhou, B. C. Mei, J. Q. Zhu, and X. L. Hong, J. Article Mater. Lett. 59, 131 (2005). https://doi.org/10.1016/j.matlet.2004.07.052

    Article  CAS  Google Scholar 

  10. Bai Yuelei, He Xiaodong, Li Yibin, Chuncheng Zhu, et al., J. Mater. Res. 24, 2528 (2009). https://doi.org/10.1557/JMR.2009.0327

    Article  CAS  Google Scholar 

  11. M. Łopacin’ski, J. Puszynski, and J. Lis, J. Am. Ceram. Soc. 84, 3051 (2004). https://doi.org/10.1111/j.1151-2916.2001.tb01138.x

    Article  Google Scholar 

  12. P. M. Bazhin, D. Yu. Kovalev, M. A. Luginina, and O. A. Averichev, Int. J. Self-Propag. High-Temp. Synth. 25, 30 (2016).

    Article  CAS  Google Scholar 

  13. G. Bagliuk, O. V. Suprun, and A. A. Mamonova, Phys. Chem. Solid State 18, 438 (2017). https://doi.org/10.15330/pcss.18.4.438-443

    Article  Google Scholar 

  14. V. A. Martirosyan and M. E. Sasuntsyan, Int. J. Pharma Sci. Sci. Res. 5 (1) (2019).

  15. V. I. Vershinnikov and D. Yu. Kovalev, in Proceedings of the International Conference SVS-50 (2017), p. 89.

  16. M. Sun, Int. Mater. Rev. 56, 143 (2011). https://doi.org/10.1179/1743280410Y.0000000001

    Article  CAS  Google Scholar 

  17. S. K. Dolukhanyan, O. P. Ter-Galstyan, A. G. Aleksanyan, and N. L. Mnatsakanyan, Russ. J. Phys. Chem. B 11, 272 (2017).

    Article  CAS  Google Scholar 

  18. S. K. Dolukhanyan, A. G. Aleksanyan, O. P. Ter-Galstyan, et al., Int. J. Self-Propag. High-Temp. Synth. 19 (2), 85 (2010).

    Article  CAS  Google Scholar 

  19. A. G. Aleksanyan, S. K. Dolukhanyan, O. P. Ter-Galstyan, et al., J. Alloys Compd. 509, 786 (2011).

    Article  Google Scholar 

  20. A. G. Aleksanyan, S. K. Dolukhanyan, O. P. Ter-Galstyan, et al., Int. J. Hydrogen Energy 37, 14234 (2012).

    Article  CAS  Google Scholar 

  21. S. K. Dolukhanyan, A. G. Aleksanyan, V. Sh. Shekhtman, et al., Int. J. Self-Propag. High-Temp. Synth. 23 (2), 78 (2014).

    Article  CAS  Google Scholar 

  22. G. N. Muradyan, S. K. Dolukhanyan, A. G. Aleksanyan, O. P. Ter-Galstyan, and N. L. Mnatsakanyan, Russ. J. Phys. Chem. B 13, 86 (2019).

    Article  CAS  Google Scholar 

  23. S. K. Dolukhanyan, O. P. Ter-Galstyan, A. G. Aleksanyan, A. G. Hakobyan, N. L. Mnatsakanyan, and V. Sh. Shekhtman, Russ. J. Phys. Chem. B 9, 702 (2015).

    Article  CAS  Google Scholar 

  24. S. K. Dolukhanyan, N. A. Martirosyan, A. G. Merzhanov, and A. B. Nalbandyan, USSR Inventor’s Certificate No. 683191, Byull. Izobret., No. 32 (1978).

  25. N. A. Martirosyan, S. K. Dolukhanyan, and A. G. Merzhanov, Fiz. Goreniya Vzryva, No. 4, 24 (1981).

    Google Scholar 

  26. S. K. Dolukhanyan, G. E. Abrosimova, et al., Int. J. Hydrogen Energy 26, 435 (2001).

    Article  Google Scholar 

  27. M. Barsoum, Ann. Rev. Mater. Res. (2011). https://doi.org/10.1146/annurev-matsci-062910-100448

Download references

Funding

The work was supported by the Ministry of Education, Science, Culture and Sport of the Republic of Armenia under the Baseline Funding Project E-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Dolukhanyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolukhanyan, S.K., Aleksanyan, A.G., Ter-Galstyan, O.P. et al. Formation of the Ti2Alc Max-Phase in a Hydride Cycle From a Mixture of Titanium and Aluminum Carbohydride Powders. Russ. J. Phys. Chem. B 16, 76–83 (2022). https://doi.org/10.1134/S1990793122010043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122010043

Keywords:

Navigation