Skip to main content
Log in

Research on the Electronic Properties of Tyrosine Dipeptide Molecule: Evaluation of the First-principles Theory

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Tyrosine dipeptide (YY) nanotubes have recently been applied as functional elements of photoelectric sensors. Based on the first-principles, density functional theory (DFT) is used to calculate the electronic properties of YY molecules. It is found that YY molecules, similar to gallium nitride, silicon carbide and zinc oxide, present the electronic properties with a wide and direct band gap. Compared with the phenylalanine dipeptide (FF), the YY molecule has a lower band gap. YY has a variety of stable conformations, and the electronic properties of different conformations are different. According to the density of states and energy band of YY, the internal factors affecting its electronic properties are the functions of amino, carboxyl, hydroxyl and other functional groups of molecular structure. Adsorption of water molecules have a significant effect on the electronic properties of YY. When a few water molecules are adsorbed, the band gap of YY decrease. With the ratio of water molecules adsorption increasing, the band gap of different conformations of YY show different change. Through comparative and analysis, the band gap of linear folding boat-shaped water molecules adsorption conformational is the lowest, 2.946 eV, reduced by 0.517eV, and the adsorption ratio of YY to water molecules is 1 : 4, which is an external factor that affect the electronic properties of YY. Combined internal and external factors to explore the electronic properties of YY, the results have laid a good theoretical basis for the application of tyrosine nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. B. L. Grigorenko, M. G. Khrenova, A. M. Kulakova, and A. V. Nemukhin, Russ. J. Phys. Chem. B 14, 457 (2020). https://doi.org/10.1134/S1990793120030161

    Article  CAS  Google Scholar 

  2. S. Shahab and M. Sheikhi, Russ. J. Phys. Chem. B 14, 15 (2020). https://doi.org/10.1134/S1990793120010145

    Article  CAS  Google Scholar 

  3. K. Tao, W. Hu, and B. Hue, Adv. Mater. 31, 1807481 (2019). https://doi.org/10.1002/adma.201807481

    Article  CAS  Google Scholar 

  4. V. L. Sedman, L. A. Abramovich, S. Allen, et al., J. Am. Chem. Soc. 128, 6903 (2006). https://doi.org/10.1021/ja060358g

    Article  CAS  PubMed  Google Scholar 

  5. L. A. Abramovich, Z. A. Arnon, X. M. Sui, et al., Adv. Mater. 30, 1704551 (2018). https://doi.org/10.1002/adma.201704551

    Article  CAS  Google Scholar 

  6. S. Kim and J. H. Kim, Small 11, 3623 (2015). https://doi.org/10.1002/smll.201500169

    Article  CAS  PubMed  Google Scholar 

  7. M. Wang, S. Xiong, X. Wu, et al., Small 7, 2801 (2011). https://doi.org/10.1002/smll.201100353

    Article  CAS  PubMed  Google Scholar 

  8. X. Wu, Z. Gan, and X. Zhu, Angew. Chem. 52, 2055 (2013). https://doi.org/10.1002/anie.201207992

    Article  CAS  Google Scholar 

  9. M. S. Ekiz, G. Cinar, M. A. Khalily, et al., Nanotechnology 27, 402002 (2016). https://doi.org/10.1088/0957-4484/27/40/402002

    Article  CAS  PubMed  Google Scholar 

  10. L. Zhao, Q. Zou, and X. Yan, Bull. Chem. Soc. Jpn. 92, 70 (2019). https://doi.org/10.1246/bcsj.20180248

    Article  CAS  Google Scholar 

  11. N. Amdursky, G. Shalev, A. Handelman, et al., APL Mater. 1, 625 (2013). https://doi.org/10.1063/1.4838815

    Article  CAS  Google Scholar 

  12. T. V. Belysheva, E. Y. Spiridonova, M. I. Ikim, G. N. Gerasimov, V. F. Gromov, and L. I. Trakhtenberg, Russ. J. Phys. Chem. B 14, 298 (2020). https://doi.org/10.1134/S1990793120020190

    Article  CAS  Google Scholar 

  13. I. V. Klimenko, M. A. Gradova, O. V. Gradov, S. B. Bibikov, and A. V. Lobanov, Russ. J. Phys. Chem. B 14, 436 (2020). https://doi.org/10.1134/S1990793120030070

    Article  CAS  Google Scholar 

  14. K. Tao, A. Levin, L. A. Abramovich, et al., Chem. Soc. Rev. 45, 3935 (2016). https://doi.org/10.1039/c5cs00889a

    Article  CAS  PubMed  Google Scholar 

  15. N. Amdursky, M. Molotskii, D. Aronov, et al., Nano Lett. 9, 3111 (2009). https://doi.org/10.1021/nl9008265

    Article  CAS  PubMed  Google Scholar 

  16. X. Yan, Y. Su, J. Li, et al., Angew. Chem., Int. Ed. 50, 11186 (2011). https://doi.org/10.1002/ange.201103941

    Article  CAS  Google Scholar 

  17. J. S. Lee, I. Yoon, J. Kim, et al., Angew. Chem., Int. Ed. 50, 1164 (2011). https://doi.org/10.1002/ange.201003446

    Article  CAS  Google Scholar 

  18. T. Nikitin, S. Kopyl, V. Y. Shur, et al., Phys. Lett. A 380, 1658 (2016). https://doi.org/10.1016/j.physleta.2016.02.043

    Article  CAS  Google Scholar 

  19. N. Amdursky, I. Koren, E. Gazit, et al., J. Nanosci. Nanotechnol. 11, 9282 (2011). https://doi.org/10.1166/jnn.2011.4278

    Article  CAS  PubMed  Google Scholar 

  20. M. Telford, Mater. Today 8, 10 (2005). https://doi.org/10.1016/S1369-7021(05)71063-4

    Article  Google Scholar 

  21. R. A. Sakovich, A. Y. Shaulov, E. M. Nechvolodova, and L. A. Tkachenko, Russ. J. Phys. Chem. B 14, 516 (2020). https://doi.org/10.1134/S1990793120030094

    Article  CAS  Google Scholar 

  22. X. Zhao and S. Zhang, Macromol. Biosci. 7, 13 (2007). https://doi.org/10.1002/masy.200900171

    Article  CAS  PubMed  Google Scholar 

  23. O. A. Golovanova and K. K. Golovchenko, Russ. J. Phys. Chem. A 93, 2275 (2019). https://doi.org/10.1134/S0036024419110104

    Article  CAS  Google Scholar 

  24. A. J. Hassan, Russ. J. Phys. Chem. B 13, 1064 (2019). https://doi.org/10.1134/S1990793119060186

    Article  CAS  Google Scholar 

  25. N. V. Dokhlikova, M. V. Grishin, S. Y. Sarvadii, and B. R. Shub, Russ. J. Phys. Chem. B 13, 525 (2019). https://doi.org/10.1134/S1990793119030035

    Article  CAS  Google Scholar 

  26. B. E. Krisyuk, Russ. J. Phys. Chem. B 14, 1 (2020). https://doi.org/10.1134/S1990793120010054

    Article  CAS  Google Scholar 

  27. T. A. Filho, F. F. Ferreira, W. A. Alves, et al., Phys. Chem. Chem. Phys. 15, 7555 (2013). https://doi.org/10.1039/c3cp43952f

    Article  CAS  Google Scholar 

  28. M. Wang, S. Xiong, X. Wu, et al., Small 7, 2801 (2011). https://doi.org/10.1002/smll.201100353

    Article  CAS  PubMed  Google Scholar 

  29. M. Rahimi, H. Chermette, S. Jamehbozorgi, R. Ghiasi, and M. Poor Kalhor, Russ. J. Phys. Chem. A 93, 1747 (2019). https://doi.org/10.1134/S0036024419090139

    Article  Google Scholar 

  30. E. Y. Arkhangelskaya, N. Y. Vorobyeva, S. V. Leonov, A. N. Osipov, and A. L. Buchachenko, Russ. J. Phys. Chem. B 14, 314 (2020). https://doi.org/10.1134/S1990793120020177

    Article  CAS  Google Scholar 

  31. S. Akyuz, S. Celik, and A. E. Ozel, Vibr. Spectrosc. 83, 57 (2016). https://doi.org/10.1016/j.vibspec.2016.01.007

    Article  CAS  Google Scholar 

  32. S. J. Clark, M. D. Segall, C. J. Pickard, et al., Z. Kristallogr. 220, 5 (2005). https://doi.org/10.1524/zkri.220.5.567.65075

    Article  Google Scholar 

  33. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  34. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  35. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  36. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by Joint fund of Science & Technology Department of Liaoning Province and State Key Laboratory of Robotics, China (Grant no.: 2020-KF-22-11). The models were built and calculated using the resources of Fujian Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Li.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Li, M. Research on the Electronic Properties of Tyrosine Dipeptide Molecule: Evaluation of the First-principles Theory. Russ. J. Phys. Chem. B 15 (Suppl 2), S181–S188 (2021). https://doi.org/10.1134/S1990793121100079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121100079

Keywords:

Navigation