Skip to main content
Log in

Dispersive Solid-Phase Extraction for Bromocresol Green Removal with β-Cyclodextrin Functionalized Magnetic Nanotubes

  • CHEMICAL PHYSICS OF NANO-MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The present study introduced a new and fast method for the removal of trace amounts of bromocresol green in water samples using β-cyclodextrin functionalized magnetic nanotubes. The donor phase used in the method contains (aqueous phase with bromocresol green) and the acceptor phase (functionalized magnetic nanotubes with cyclodextrin). Experiments were performed in two steps of extraction of dye from aqueous sample and desorption of dye using ethanol. The analysis of the samples was carried out with a UV-Vis spectrophotometer. The parameters of dye extraction were studied such as the effect of solvents, pH of the phases, time of extraction, interference species, and elution solvent volumes. The isotherm of dye adsorption was well described by the Langmuir model, and the sorption capacity in the maximum was 34.18 mg g–1. The kinetic studies indicating adsorption of bromocresol green by Fe3O4@MWCNT/CD fitted with the pseudo-second-order kinetic model and resulting from that chemisorption process is the rate-limiting process in the bromocresol green adsorption. The limit of detection and limit of quantification factors for dye extraction were 7.2 and 23 µg L1, respectively. A linear range was achieved between 1–10 mg L1. In the last, the cyclodextrin functionalized magnetic nanotubes (Fe3O4@MWCNT/CD) presented a high potential for bromocresol green removal from aqueous samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. Abniki and A. Moghimi, Micro & Nano Letters, 16, 455 (2021).

  2. Y. I. Skurlatov, E. Vichutinskaya, N. Zaitseva, E. V. Shtamm, V. O. Shvydkii, L. V. Semenyak, and I. S. Baikova, Russ. J. Phys. Chem. B 11, 576 (2017).

    Article  CAS  Google Scholar 

  3. S. Sanguanprang, A. Phuruangrat, T. Thongtem, and S. Thongtem, J. Electron. Mater. 49, 1841 (2020).

    Article  CAS  Google Scholar 

  4. D. P. Mungasavalli, T. Viraraghavan, and Y.-C. Jin, Colloids Surf., A 301, 214 (2007).

    Article  CAS  Google Scholar 

  5. R. Elmoubarki, F. Mahjoubi, H. Tounsadi, et al., Water Resour. Ind. 9, 16 (2015).

    Article  Google Scholar 

  6. M. Ramezanpour, S. N. Raeisi, S. A. Shahidi, and S. Ramezanpour, Micro Nano Lett. 15, 390 (2020).

    Article  CAS  Google Scholar 

  7. F. M. Bezerra, M. J. Lis, H. B. Firmino, et al., Molecules 25, 3624 (2020).

    Article  CAS  Google Scholar 

  8. A. Moghimi and M. Yari, J. Chem. Rev. 1, 1 (2019).

    Article  Google Scholar 

  9. T. Pourshamsi, F. Amri, and M. Abniki, J. Iran. Chem. Soc., 1 (2020).

  10. A. Moghimi and M. Abniki, Chemical Methodologies, 5, 250 (2021).

  11. M. Evgenev, F. Gumerov, R. Musin, I. Evgeneva, F. Gabitov, and L. Y. Yarullin, Russ. J. Phys. Chem. B 5, 1209 (2011).

    Article  Google Scholar 

  12. M. A. Obando, J. M. Estela, and V. Cerdà, J. Pharm. Biomed. Anal. 48, 212 (2008).

    Article  CAS  Google Scholar 

  13. M. J. Nozal, J. Bernal, J. Jiménez, M. T. Martín, and J. Bernal, J. Chromatogr. A 1076, 90 (2005).

    Article  CAS  Google Scholar 

  14. L. Ai, C. Zhang, F. Liao, Y. Wang, et al., J. Hazard. Mater. 198, 282 (2011).

    Article  CAS  Google Scholar 

  15. H. Arefazar and A. Moghimi, Orient. J. Chem. 32, 2525 (2016).

    Article  CAS  Google Scholar 

  16. A. Suwattanamala, N. Bandis, K. Tedsree, and C. Issro, Mater. Today: Proc. 4, 6567 (2017).

    Google Scholar 

  17. R. Ilyasova, I. Massalimov, and A. Mustafin, Russ. J. Phys. Chem. B 14, 152 (2020).

    Article  CAS  Google Scholar 

  18. N. Salehi, A. Moghimi, and H. Shahbazi, Int. J. Environ. Anal. Chem., 1 (2020).

  19. M. Abniki, A. Moghimi, and F. Azizinejad, J. Chin. Chem. Soc. (Taipei, Taiwan) (2020).

  20. A. Moghimi, Russ. J. Phys. Chem. A 87, 1203 (2013).

    Article  CAS  Google Scholar 

  21. F. Safa and Y. Alinezhad, Silicon, 1 (2019).

  22. S. Goyanes, G. Rubiolo, A. Salazar, et al., Diamond Relat. Mater. 16, 412 (2007).

    Article  CAS  Google Scholar 

  23. X. Cao, H. Dong, C. M. Li, and L. A. Lucia, J. Appl. Polym. Sci. 113, 466 (2009).

    Article  CAS  Google Scholar 

  24. M. K. Banjare, K. Behera, R. K. Banjare, S. Pandey, and K. K. Ghosh, J. Mol. Liq. 302, 112530 (2020).

    Article  Google Scholar 

  25. S. Nellaiappan and A. S. Kumar, Microchim. Acta 184, 3255 (2017).

    Article  CAS  Google Scholar 

  26. M. Abniki, A. Moghimi, and F. Azizinejad, J. Serb. Chem. Soc., (2019).

  27. A. Samadi, R. Ahmadi, and S. M. Hosseini, Org. Electron. 75, 105405 (2019).

    Article  Google Scholar 

  28. M. Sadeghi-Kiakhani, M. Arami, and K. Gharanjig, J. Environ. Chem. Eng. 1, 406 (2013).

    CAS  Google Scholar 

  29. P. Arabkhani and A. Asfaram, J. Hazard. Mater. 384, 121394 (2020).

    Article  CAS  Google Scholar 

  30. Y. A. El-Reash, J. Environ. Chem. Eng. 4, 3835 (2016).

    Article  Google Scholar 

  31. U. Shafique, A. Ijaz, M. Salman, et al., J. Taiwan Inst. Chem. Eng. 43, 256 (2012).

    Article  CAS  Google Scholar 

  32. A. Maleki, E. Pajootan, and B. Hayati, J. Taiwan Inst. Chem. Eng. 51, 127 (2015).

    CAS  Google Scholar 

  33. M. Abniki, Z. Azizi, and H.A. Panahi, IET Nanobiotechnology, (2021).

  34. P. Bhalla, A. K. Sharma, B. S. Kaith, et al., Mater. Chem. Phys. 354, 123304 (2020).

    Google Scholar 

  35. P. Wang, M. Cao, C. Wang, Y. Ao, J. Hou, and J. Qian, Appl. Surf. Sci. 290, 116 (2014).

    Article  CAS  Google Scholar 

  36. S. Lagergren, Handlingar 24, 1 (1898).

    Google Scholar 

  37. H. Ys, G. Mckay, H. Ys, and G. Mckay, Proc. Biochem. 34, 451 (1999).

    Article  Google Scholar 

  38. W. J. Weber and J. C. Morris, J. Sanit. Eng. Div. 89, 31 (1963).

    Article  Google Scholar 

  39. O. C. Elijah, O. N. Collins, O. C. Obumneme, and N.-B. Jessica, Asian J. Chem. Sci., 15 (2020).

  40. M. Ghaedi, H. Khajesharifi, A. H. Yadkuri, et al., Spectrochim. Acta, Part A 86, 62 (2012).

    Article  CAS  Google Scholar 

  41. K. K. Choy, G. McKay, and J. F. Porter, Resour. Conserv. Recycl. 27, 57 (1999).

    Article  Google Scholar 

  42. S. Koner, B. K. Saha, R. Kumar, and A. Adak, Intern. J. Curr. Res. 33, 128 (2011).

    Google Scholar 

  43. R. Rehman, T. Mahmud, J. Anwar, M. Salman, U. Shafique, W. Zaman, and F. Ali, J. Chem. Soc. Pakist. 33, 228 (2011).

    CAS  Google Scholar 

  44. D. Liu, J. Yuan, J. Li, and G. Zhang, ACS Omega 4, 12680 (2019).

    Article  CAS  Google Scholar 

  45. B. Murmu, S. Behera, S. Das, R. Mohapatra, B. Bindhani, and P. Parhi, Indian J. Chem. Technol. 25, 409 (2018).

    CAS  Google Scholar 

  46. A. Shokrollahi, A. Alizadeh, Z. Malekhosseini, and M. Ranjbar, J. Chem. Eng. Data 56, 3738 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the Islamic Azad University of Varamin-Pishva for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Moghimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali Moghimi, Milad Abniki Dispersive Solid-Phase Extraction for Bromocresol Green Removal with β-Cyclodextrin Functionalized Magnetic Nanotubes. Russ. J. Phys. Chem. B 15 (Suppl 1), S130–S139 (2021). https://doi.org/10.1134/S1990793121090128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121090128

Keywords:

Navigation