Skip to main content
Log in

Improvement of the Optoelectronic Properties of Terazulene Molecules for Organic Solar Cell Applications

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

We have designed six molecular donors based on three azulene units connected serially with different substituted groups. The electronic structures, optoelectronic properties and absorption spectra of molecular donors are calculated by using time-dependent density functional theory (TD-DFT). The studied molecules demonstrate good properties with low energy gap, small exciton binding energy, high open circuit voltage and broad absorption spectrum. The molecular donor (MD5) is identified as the promising candidate of the organic solar cell because of the most enhanced in optical absorption, energy gap, open circuit voltage, energy driving force, exciton binding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. C. Scharber, Adv. Mater. 28, 1994 (2016).

    Article  CAS  Google Scholar 

  2. Q.-C. Yu, W.-F. Fu, J.-H. Wan, et al., ACS Appl. Mater. Interfaces 6, 5798 (2014).

    Article  CAS  Google Scholar 

  3. J. Hou, O. Inganäs, R. H. Friend, and F. Gao, Nat. Mater. 17, 119 (2018).

    Article  CAS  Google Scholar 

  4. C. Yan, S. Barlow, Z. Wang, et al., Nat. Rev. Mater. 3, 18003 (2018).

    Article  CAS  Google Scholar 

  5. A. M. Khudhair, F. N. Ajeel, and M. H. Mohammed, Microelectron. Eng. 212, 21 (2019).

    Article  CAS  Google Scholar 

  6. D. M. Kammen, Sci. Amer. 295, 84 (2006).

    Article  Google Scholar 

  7. Y. Ren, D. Sun, Y. Cao, et al., J. Amer. Chem. Soc. 140, 2405 (2018).

    Article  CAS  Google Scholar 

  8. A. M. Khudhair, F. N. Ajeel, and M. H. Mohammed, Russ. J. Phys. Chem. B 12, 645 (2018).

    Article  CAS  Google Scholar 

  9. B. A. Ek, T. S. Gershon, S. Guha, O. Gunawan, and T. K. Todorov, Google Patents (2018).

  10. O. Shevaleevskiy, A. Nikolskaia, M. Vildanova, S. S. Kozlov, O. V. Alexeeva, A. A. Vishnev, and L. L. Larina, Russ. J. Phys. Chem. B 12, 663 (2018).

    Article  CAS  Google Scholar 

  11. T. Dakhil, S. M. Abdulalmuhsin, and A. H. Al-Khursan, Appl. Opt. 57, 612 (2018).

    Article  CAS  Google Scholar 

  12. A. He, Y. Qin, W. Dai, and X. Luo, Dyes Pigments (2018).

  13. A. Yella, H.-W. Lee, H. N. Tsao, et al., Science (Washington, DC, U. S.) 334, 629 (2011).

    Article  CAS  Google Scholar 

  14. A. K. Palai, A. Kumar, S. P. Mishra, and M. Patri, J. Mater. Sci. 49, 7408 (2014).

    Article  CAS  Google Scholar 

  15. Y. Zou et al., J. Mater. Sci. 47, 5535 (2012).

    Article  CAS  Google Scholar 

  16. F. N. Ajeel, M. H. Mohammed, and A. M. Khudhair, Russ. J. Phys. Chem. B 11, 850 (2017).

    Article  CAS  Google Scholar 

  17. N. E. Jackson, B. M. Savoie, T. J. Marks, L. X. Chen, and M. A. Ratner, J. Phys. Chem. Lett. 6, 77 (2014).

    Article  Google Scholar 

  18. A. Litinskii and T. D. Hien, Russ. J. Phys. Chem. B 8, 787 (2014).

    Article  CAS  Google Scholar 

  19. M. C. Scharber, D. Mühlbacher, M. Koppe, et al., Adv. Mater. 18, 789 (2006).

    Article  CAS  Google Scholar 

  20. H. Zhou, L. Yang, and W. You, Macromolecules 45, 607 (2012).

    Article  CAS  Google Scholar 

  21. S. A. Choulis, J. Nelson, Y. Kim, et al., Appl. Phys. Lett. 83, 3812 (2003).

    Article  CAS  Google Scholar 

  22. H. Xin and X. Gao, ChemPlusChem 82, 945 (2017).

    Article  CAS  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  24. R. Dennington, T. Keith, and J. Millam, Gauss View, Version 5 (Semichem Inc., Shawnee Mission, KS, 2009).

    Google Scholar 

  25. Y. Yamaguchi, K. Ogawa, K.-I. Nakayama, Y. Ohba, and H. Katagiri, J. Amer. Chem. Soc. 135, 19095 (2013).

    Article  CAS  Google Scholar 

  26. W. Taouali, M. E. Casida, A. A. M. Darghouth, and K. Alimi, Comput. Mater. Sci. 150, 54 (2018).

    Article  CAS  Google Scholar 

  27. M. E. Köse, J. Phys. Chem. A 116, 12503 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lafy F. AL-Badry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdiulrsool H. AL-Taher, Lafy F. AL-Badry & Semiromi, E.H. Improvement of the Optoelectronic Properties of Terazulene Molecules for Organic Solar Cell Applications. Russ. J. Phys. Chem. B 15 (Suppl 1), S1–S5 (2021). https://doi.org/10.1134/S1990793121090025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121090025

Keywords:

Navigation