Skip to main content
Log in

Supercritical Fluid Synthesis of Highly Porous Polylactide Matrices: Fundamental Features and Technology of Formation, Development and Stabilization of Polymer Foams

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The paper studies the formation, development and stabilization of the structure of foamed amorphous D,L-polylactide after a slow (quasi-isothermal) and a fast (quasi-adiabatic) relief of the pressure of supercritical carbon dioxide used as a plasticizing/foaming agent. The following regularities have been established: (1) the values of the foam expansion factor in the process of quasi-adiabatic depressurization are significantly lower than in the quasi-isothermal regime because of significant dissipation of the “polymer–foaming agent” system internal energy due to the internal friction in the system; (2) an expansion-collapse effect is observed during the quasi-isothermal foaming; (3) at the intermediate stage between nucleation and intensive foam development, the pore nuclei growth in the plasticized polymer is self-similar. The results obtained are important for selecting foaming regimes that provide the synthesized highly porous matrices with the structural characteristics required for their use in regenerative medicine and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Lanza, R. Langer, J. P. Vacanti, and A. Atala, Principles of Tissue Engineering (Academic, New York, 2020).

    Google Scholar 

  2. Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties, Ed. by X. C. Zhang (Woodhead, Cambridge, 2016).

    Google Scholar 

  3. Biomedical Foams for Tissue Engineering Applications, Ed. by P. Netti (Woodhead, Cambridge, 2014).

    Google Scholar 

  4. A. Salerno, M. Oliviero, E. di Maio, S. Iannace, and P. A. Netti, J. Mater. Sci.: Mater. Med. 20, 2043 (2009).

    CAS  Google Scholar 

  5. E. N. Antonov, V. N. Bagratashvili, S. M. Howdle, A. N. Konovalov, V. K. Popov, K. M. Shakesheff, and M. J. Whitaker, Adv. Mater. 17, 327 (2005).

    Article  CAS  Google Scholar 

  6. E. Reverchon, R. Adami, S. Cardea, and G. della Porta, J. Supercrit. Fluids 47, 484 (2009).

    Article  CAS  Google Scholar 

  7. S. Cardea, P. Pisanti, and E. Reverchon, J. Supercrit. Fluids 54, 290 (2010).

    Article  CAS  Google Scholar 

  8. A. Karakeçili and A. Arıkan, Polym. Compos. 33, 1215 (2012).

    Article  Google Scholar 

  9. S. Cardea, L. Baldino, I. de Marco, and E. Reverchon, Chem. Eng. Trans. 38, 241 (2014).

    Google Scholar 

  10. B. N. Çetiner and Z. E. Erkmen, Arch. Mater. Sci. Eng. 65 (2), 66 (2014).

    Google Scholar 

  11. A. Rainer, S. M. Giannitelli, D. Accoto, S. de Porcellinis, E. Guglielmelli, and M. Trombetta, Ann. Biomed. Eng. 40, 966 (2012).

    Article  Google Scholar 

  12. L. J. White, V. Hutter, H. Tai, S. M. Howdle, and K. M. Shakesheff, Acta Biomater. 8, 61 (2012).

    Article  CAS  Google Scholar 

  13. L. M. Mathieu, M. O. Montjovent, P. E. Bourban, D. P. Pioletti, and J. A. E. Manson, J. Biomed. Mater. Res., Part A 75, 89 (2005).

    CAS  Google Scholar 

  14. S. E. Bogorodski, V. N. Vasilets, L. I. Krotova, S. A. Minaeva, A. V. Mironov, E. A. Nemets, V. A. Surguchenko, V. K. Popov, and V. I. Sevastianov, Inorg. Mater.: Appl. Res. 4, 448 (2013).

    Article  Google Scholar 

  15. V. I. Sevast’yanov, Russ. J. Transplantol. Artif. Organs 16 (3), 93 (2014).

    Article  Google Scholar 

  16. M. Champeau, M. Thomassin, T. Tassaing, and C. Jérôme, J. Control. Release 209, 248 (2015).

    Article  CAS  Google Scholar 

  17. D. A. Zimnyakov, V. N. Bagratashvili, S. A. Yuvchenko, I. O. Slavnetskov, A. V. Kalacheva, and O. V. Usha-kova, Russ. J. Phys. Chem. B 13, 1254 (2019).

    Article  CAS  Google Scholar 

  18. D. A. Zimnyakov, R. A. Zdrajevsky, N. V. Minaev, E. O. Epifanov, V. K. Popov, and O. V. Ushakova, Polymers 12, 1055 (2020).

    Article  CAS  Google Scholar 

  19. D. A. Zimnyakov, M. V. Alonova, and E. V. Ushakova, Polymers 13, 1115 (2021).

    Article  CAS  Google Scholar 

  20. S. Ross, Ind. Eng. Chem. 61, 48 (1969).

    Article  CAS  Google Scholar 

  21. D. A. Zimnyakov, V. K. Popov, N. V. Minaev, E. O. Epifanov, O. O. Parenago, R. A. Zdrajevsky, D. A. Vereshagin, and O. V. Ushakova, Russ. J. Phys. Chem. B 14, 1268 (2020).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Higher Education (state assignment of the Federal Research Center “Crystallography and Photonics” RAS) as regards experimental data obtaining and the Russian Foundation for Basic Research (Project no. 18-29-06024) as regards the theoretical modeling and interpretation of the experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zimnyakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimnyakov, D.A., Alonov, M.V., Ushakova, E.V. et al. Supercritical Fluid Synthesis of Highly Porous Polylactide Matrices: Fundamental Features and Technology of Formation, Development and Stabilization of Polymer Foams. Russ. J. Phys. Chem. B 15, 1324–1328 (2021). https://doi.org/10.1134/S1990793121080182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121080182

Keywords:

Navigation