Skip to main content
Log in

Effect of The Synthesis Temperature and Metal Ratio on Structural Characteristics of Nanocomposites Based on Pyrolyzed Chitosan and Bimetallic Fe–Co Nanoparticles

  • XXXI SYMPOSIUM “MODERN CHEMICAL PHYSICS” (TUAPSE, SEPTEMBER, 2019)
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Metal-carbon nanocomposites, the structure of which is a carbon matrix with nanoparticles of a Fe–Co solid solution uniformly distributed in it, are synthesized by pyrolysis of a precursor based on chitosan and iron and cobalt nitrates under the action of infrared radiation in the temperature range 500–700°С. The features of the formation of nanoparticles of an Fe–Co solid solution are studied by X-ray diffraction depending on the synthesis conditions and the ratio of the metals in the system. The experimentally determined values of the lattice parameters are used to estimate the composition of the forming bimetallic Fe–Co nanoparticles. The morphology and dispersion of metal nanoparticles are studied by transmission electron microscopy. Elemental analysis of the samples under study is carried out by the methods of X-ray fluorescence analysis and X-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. N. Khadzhiev, S. A. Sagitov, A. S. Lyadov, et al., Pet. Chem. 54, 88 (2014).

    Article  CAS  Google Scholar 

  2. S. Ali, Mohd N. A. Zabidi, and D. Subbarao, Chem. Central J. 5, 1 (2011).

    Article  Google Scholar 

  3. V. A. de la Peña O’Shea, M. C. Álvarez-Galván, J. M. Campos-Martin, et al., Eur. J. Inorg. Chem. 2006, 5057 (2006).

    Article  Google Scholar 

  4. L. Liu, P. Concepcion, and A. Corma, J. Catal. 340, 1 (2016).

    Article  CAS  Google Scholar 

  5. H. Malik, U. A. Qureshi, M. Muqeet, et al., Environ. Sci. Pollut. Res. 25, 3557 (2017).

    Article  Google Scholar 

  6. M. V. Galaburda, V. M. Bogatyrov, W. Tomaszewski, et al., Colloids Surf., A 529, 950 (2017).

    Article  CAS  Google Scholar 

  7. T. Zou, Y. Wu, and H. Li, Mater. Lett. 214, 280 (2018).

    Article  CAS  Google Scholar 

  8. Y. Nie, H. H. He, R. Z. Gong, et al., J. Magn. Magn. Mater. 310, 13 (2007).

    Article  CAS  Google Scholar 

  9. Q. A. Pankhurst, J. Connolly, S. K. Jones, et al., J. Phys. D: Appl. Phys. 36, 167 (2003).

    Article  Google Scholar 

  10. P. I. Soares, D. Machado, C. Laia, et al., Carbohydr. Polym. 149, 382 (2016).

    Article  CAS  Google Scholar 

  11. A. S. Shurshina, A. R. Galina, and E. I. Kulish, Russ. J. Phys. Chem. B 10, 1001 (2016).

    Article  CAS  Google Scholar 

  12. E. I. Kulish, I. F. Tuktarova, V. V. Chernova, V. P. Zakharov, and S. V. Kolesov, Russ. J. Phys. Chem. B 9, 237 (2015).

    Article  CAS  Google Scholar 

  13. G. A. Kloster, N. E. Marcovich, and M. A. Mosiewicki, Eur. Polym. J. 66, 386 (2015).

    Article  CAS  Google Scholar 

  14. L. Shao, Y. Ren, Z. Wang, et al., Polymer 75, 168 (2015).

    Article  CAS  Google Scholar 

  15. A. A. Vasilev, M. N. Efimov, G. N. Bondarenko, et al., Chem. Phys. Lett. 730, 8 (2019).

    Article  CAS  Google Scholar 

  16. V. A. Kharitonov, M. V. Grishin, S. A. Ulasevich, S. Yu. Sarvadii, and B. R. Shub, Russ. J. Phys. Chem. B 13, 16 (2019).

    Article  CAS  Google Scholar 

  17. L. M. Zemtsov, G. P. Karpacheva, M. N. Efimov, D. G. Muratov, and K. A. Bagdasarova, Polymer Sci., Ser. A 48, 633 (2006).

    Article  Google Scholar 

  18. V. N. Selivanov and E. F. Smyslov, Crystallogr. Rep. 38, 382 (1993).

    Google Scholar 

  19. M. M. Avilova and V. V. Petrov, Russ. J. Phys. Chem. B 11, 618 (2017).

    Article  CAS  Google Scholar 

  20. PDF-2, The International Centre for Diffraction Data. http://www.icdd.com/translation/pdf2.html.

  21. A. Taylor and H. Sinclair, Proc. Phys. Soc. 45, 126 (1945).

    Article  Google Scholar 

  22. I. Ohnuma, H. Enoki, O. Ikeda, et al., Acta Mater. 50, 379 (2002).

    Article  CAS  Google Scholar 

  23. E. L. Dzidziguri, M. N. Efimov, L. M. Zemtsov, et al., RF Patent No. 2597935, Byull. Izobret., No. 26 (2016).

  24. A. A. Vasil’ev, G. P. Karpacheva, E. L. Dzidziguri, et al., Inventor’s Certificate No. 2019660702, Byull. No. 8 (2019).

Download references

Funding

The reported study was funded by RFBR, project number 19-33-90062. This study was carried out under the State Program of TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vasilev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilev, A.A., Dzidziguri, E.L., Efimov, M.N. et al. Effect of The Synthesis Temperature and Metal Ratio on Structural Characteristics of Nanocomposites Based on Pyrolyzed Chitosan and Bimetallic Fe–Co Nanoparticles. Russ. J. Phys. Chem. B 15, 381–388 (2021). https://doi.org/10.1134/S1990793121030313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121030313

Keywords:

Navigation