Skip to main content
Log in

Selective Hydration of Furfurol in the Presence of Platinum-Containing Catalysts

  • XXXI SYMPOSIUM “MODERN CHEMICAL PHYSICS” (TUAPSE, SEPTEMBER, 2019)
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this study, it is found that furfural in the presence of Pt–M/Al2O3-catalysts (where M is Cu and Ni) at a temperature of 90°С is converted into furfuryl alcohol with selectivity reaching 90%; and at 150°C, it is converted to α-methylfuran with a selectivity of 92%. Note that the yield of furfural resinification products in the experiments performed does not exceed 5%. It is shown that tetralin is the most effective solvent, which prevents the resinification of furfural, and the use of aluminum oxide as a carrier makes it possible, at the same temperatures, to increase the degree of conversion of furfural in comparison with silicon oxide and sibunite. The results obtained allow us to propose an efficient method for the production of valuable petrochemical products from renewable raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. A. Zharova, A. V. Chistyakov, S. V. Lesin, G. I. Konstantinov, O. V. Arapova, and M. V. Tsodikov, Russ. J. Phys. Chem. B 13, 421 (2019).

    Article  CAS  Google Scholar 

  2. C. Chatterjee, F. Pong, and A. Sen, Green Chem. 17, 40 (2015).

    Article  CAS  Google Scholar 

  3. J. C. Serrano-Ruiz, R. Luque, and A. Sepulveda-Escribano, Chem. Soc. Rev. 40, 5266 (2011).

    Article  CAS  Google Scholar 

  4. D. M. Alonso, S. G. Wettstein, and J. A. Dumesic, Chem. Soc. Rev. 41, 8075 (2012).

    Article  CAS  Google Scholar 

  5. Y. Luo, Z. Li, X. Li, et al., Catal. Today 319, 14 (2019).

    Article  CAS  Google Scholar 

  6. S. Alipour, H. Omidvarborna, and D. S. Kim, Renewable Sustainable Energy Rev. 71, 908 (2017).

    Article  CAS  Google Scholar 

  7. I. Agirrezabal-Telleria, I. Gandarias, and P. L. Arias, Catal. Today 234, 42 (2014).

    Article  CAS  Google Scholar 

  8. L. I. Kleshchevnikov, I. V. Loginova, M. V. Kharina, et al., Vestn. Tekhnol. Univ. 18 (19), 95 (2015).

    Google Scholar 

  9. Ullmann's Encyclopedia of Industrial Chemistry, 6th ed. (Wiley-VCH, Weinheim, 2007), p. 313.

  10. J. B. Barr and S. B. Wallon, J. Appl. Polym. Sci. 15, 1079 (1971).

    Article  CAS  Google Scholar 

  11. M. H. Schneider and J. G. Phillips, US Patent US6747076 B2 (2004).

  12. H. Adkins and R. Connor, J. Am. Chem. Soc. 53, 1091 (1931).

    Article  CAS  Google Scholar 

  13. R. Connor, K. Folkers, and H. Adkins, J. Am. Chem. Soc. 54, 1138 (1932).

    Article  CAS  Google Scholar 

  14. B. H. Wojcik, Ind. Eng. Chem. 40, 210 (1948).

    Article  CAS  Google Scholar 

  15. P. Panagiotopoulou and D. G. Vlachos, Appl. Catal. A 480, 17 (2014).

    Article  CAS  Google Scholar 

  16. R. V. Sharma, U. Das, R. Sammynaiken, et al., Appl. Catal. A 454, 127 (2013).

    Article  CAS  Google Scholar 

  17. M. M. Villaverde, N. M. Bertero, T. F. Garetto, et al., Catal. Today 213, 87 (2013).

    Article  CAS  Google Scholar 

  18. N. S. Biradar, A. A. Hengne, S. N. Birajdar, et al., Org. Process Res. Dev. 18, 1434 (2014).

    Article  CAS  Google Scholar 

  19. K. Fulajtárova, T. Soták, M. Hronec, et al., Appl. Catal. A 502, 78 (2015).

    Article  Google Scholar 

  20. S. A. Selishcheva, A. A. Smirnov, A. V. Fedorov, et al., Catalysts 9, 816 (2019).

    Article  CAS  Google Scholar 

  21. S. A. Selishcheva, A. A. Smirnov, A. V. Fedorov, D. Yu. Ermakov, Yu. K. Gulyaeva, and V. A. Yakovlev, Catal. Ind. 11, 216 (2019).

    Article  Google Scholar 

  22. M. V. Grishin, A. K. Gatin, N. V. Dokhlikova, N. N. Kolchenko, S. Yu. Sarvadii and B. R. Shub, Russ. J. Phys. Chem. B 13, 9 (2019).

    Article  CAS  Google Scholar 

  23. S. M. Badalyan, M. N. Rumyantseva, S. A. Nikolaev, et al., Inorg. Mater. 46, 232 (2010).

    Article  CAS  Google Scholar 

  24. A. A. Smirnov, I. N. Shilov, M. V. Alekseeva, S. A. Selishcheva, and V. A. Yakovlev, Catal. Ind. 10, 228 (2018).

    Article  Google Scholar 

  25. H. Li, H. Luo, L. Zhuang, et al., J. Mol. Catal. A 203, 267 (2003).

    Article  CAS  Google Scholar 

  26. K. L. Zanaveskin, R. V. Lukashev, M. N. Makhin, et al., Ceram. Int. 40, 16577 (2014).

    Article  CAS  Google Scholar 

  27. M. V. Grishin, A. K. Gatin, V. G. Slutsky, V. A. Kharitonov, and B. R. Shub, Russ. J. Phys. Chem. B 12, 937 (2018).

    Article  CAS  Google Scholar 

  28. M. V. Grishin, A. K. Gatin, S. Yu. Sarvadii, et al., Khim. Fiz. 39, 1 (2020).

    Google Scholar 

  29. S. A. Nikolaev, E. V. Golubina, and M. I. Shilina, Appl. Catal. B 208, 116 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 18-73-10216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chistyakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutlugildina, K.R., Chistyakova, P.A., Nikolaev, S.A. et al. Selective Hydration of Furfurol in the Presence of Platinum-Containing Catalysts. Russ. J. Phys. Chem. B 15, 399–406 (2021). https://doi.org/10.1134/S199079312103026X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312103026X

Keywords:

Navigation