Skip to main content
Log in

Relationship Between Matrix Metalloproteinase-2 Inhibition Constants With APP-IP Oligopeptide and Its Mutant Forms and Electronic Binding Descriptors

  • XXXI SYMPOSIUM “MODERN CHEMICAL PHYSICS” (TUAPSE, SEPTEMBER, 2019)
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The electron density descriptors are calculated for the complexes of metalloproteinase-2 with the APP-IP inhibitor and its mutant forms, and it is shown that the electron localization function (ELF) of the coordination bond of the zinc cation and the ligand atom shows differences in the experimentally observed inhibition constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. E. Vandenbroucke and C. Libert, Nat. Rev. Drug Discov. 13, 904 (2014). https://doi.org/10.1038/nrd4390

    Article  CAS  PubMed  Google Scholar 

  2. M. W. Ndinguri, M. Bhowmick, D. Tokmina-Roszyk, T. K. Robichaud, and G. B. Fields, Molecules 17, 14230 (2012). https://doi.org/10.3390/molecules171214230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. Hashimoto, T. Takeuchi, K. Komatsu, et al., J. Biol. Chem. 286, 33236 (2011). https://doi.org/10.1074/jbc.M111.264176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. G. Khrenova, I. D. Solovyev, G. D. Lapshin, and A. P. Savitsky, Mendeleev Commun. 27, 157 (2017). https://doi.org/10.1016/j.mencom.2017.03.017

    Article  CAS  Google Scholar 

  5. M. G. Khrenova, A. P. Savitsky, I. A. Topol, and A. V. Nemukhin, J. Phys. Chem. B 118, 13505 (2014). https://doi.org/10.1021/jp5088702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu. I. Meteleshko, A. V. Nemukhin, and M. G. Khrenova, Russ. J. Phys. Chem. B 13, 389 (2019).

    Article  CAS  Google Scholar 

  7. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999). https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  8. W. D. Cornell, P. Cieplak, C. I. Bayly, et al., J. Am. Chem. Soc. 117, 5179 (1995). https://doi.org/10.1021/ja00124a002

    Article  CAS  Google Scholar 

  9. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983). https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  10. M. Valiev, E. J. Bylaska, N. Govind, et al., Comput. Phys. Commun. 181, 1477 (2010). https://doi.org/10.1016/j.cpc.2010.04.018

    Article  CAS  Google Scholar 

  11. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  12. R. F. W. Bader, Atoms in Molecules–A Quantum Theory (Oxford Univ. Press, Oxford, 1990).

    Google Scholar 

  13. V. D. Mayorov, G. I. Voloshenko, I. S. Kislina, and E. G. Tarakanova, Russ. J. Phys. Chem. B 14, 5 (2020).

    Article  Google Scholar 

  14. D. N. Tarasov and R. P. Tiger, Russ. J. Phys. Chem. B 13, 478 (2019).

    Article  CAS  Google Scholar 

  15. A. A. Abdullaev and G. A. Rabadanov, Russ. J. Phys. Chem. B 12, 192 (2018).

    Article  CAS  Google Scholar 

  16. M. G. Khrenova, A. V. Tomilko, and V. G. Tsirelson, Mosc. Univ. Chem. Bull. 74, 106 (2019).

    Article  Google Scholar 

  17. M. G. Khrenova and V. G. Tsirelson, Mendeleev Commun. 29, 492 (2019). https://doi.org/10.1016/j.mencom.2019.09.004

    Article  CAS  Google Scholar 

  18. M. G. Khrenova, A. V. Krivitskaya, and V. G. Tsirelson, New J. Chem. 43, 7329 (2019). https://doi.org/10.1039/c9nj00254e

    Article  CAS  Google Scholar 

  19. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  20. R. F. W. Bader and H. Essen, J. Chem. Phys. 80, 1943 (1984). https://doi.org/10.1063/1.446956

    Article  CAS  Google Scholar 

  21. B. Niepötter, R. Herbst-Irmer, D. Kratzert, et al., Angew. Chem. Int. Ed. 53, 2766 (2014). https://doi.org/10.1002/anie.201308609

    Article  CAS  Google Scholar 

  22. M. Laitaoja, J. Valjakka, and J. Jänis, Inorg. Chem. 52, 10983 (2013). https://doi.org/10.1021/ic401072d

    Article  CAS  PubMed  Google Scholar 

  23. F. Fuster and B. Silvi, Theor. Chem. Acc. 104, 13 (2000). https://doi.org/10.1007/s002149900100

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the use of supercomputer resources of Lomonosov Moscow State University.

Funding

This study was partly financially supported by the Russian Foundation for Basic Research (project no. 18-03-00605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Khrenova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakova, A.M., Khrenova, M.G. Relationship Between Matrix Metalloproteinase-2 Inhibition Constants With APP-IP Oligopeptide and Its Mutant Forms and Electronic Binding Descriptors. Russ. J. Phys. Chem. B 15, 394–398 (2021). https://doi.org/10.1134/S1990793121030246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121030246

Keywords:

Navigation