Skip to main content
Log in

Boundary-Driven Non-Equilibrium Molecular Dynamics Calculation of the Soret Coefficient in n-Hexane/n-Dodecane Mixtures

  • DYNAMICS OF TRANSFER PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The Soret coefficients of n-hexane/n-dodecane mixtures were calculated by the enhanced heat exchange (eHEX) algorithm with the TraPPE-UA force field. The time that the system takes to reach the steady state has been investigated, the system is easier to reach thermal steady state than concentration steady state and composition is not a simulation time affecting factor in a fixed molecule number system. The Soret coefficients calculated in this work are in good agreement with experimental data from literatures, and the differences between the two means are no more than 12%. The variation tendency of the Soret coefficients is going up after dropping with increasing molar fraction of n-C12 in the mixture, and the minimum value can be obtained at x1 = 0.7. The coincidence of the simulated and experimental data affirms the availability of TraPPE-UA force field applied in transport simulation and the validity of eHEX algorithm used in NEMD processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. C. Ludwig, Sitzungsber, Preuss. Akad. Wiss. Phys. Math. Kl. 20, 539 (1856).

    Google Scholar 

  2. C. Soret, Arch. Sci. Phys. Nat. 2, 48 (1979).

    Google Scholar 

  3. B. Chen, H. F. Jiang, H. Liu, K. Liu, X. Liu, and X. J. Hu, 2D Mater. 6, 035018 (2018).

  4. K. C. Liu, Int. J. Heat Mass Transf. 81, 347 (2015).

    Article  Google Scholar 

  5. T. Fukuyama, A. Fuka, M. Mochizuki, K. Kamei, and Y. T. Maeda, Langmuir 31, 12567 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. V. Lago and M. H. England, J. Climate 32, 6319 (2019).

    Article  Google Scholar 

  7. G. V. Mishakov, V. K. Popov, and V. N. Bagratashili, Russ. J. Phys. Chem. B 9, 1143 (2015).

    Article  CAS  Google Scholar 

  8. T. Roy, T. B. Jonsthocel, C. Lemon, and A. J. Wathen, J. Comput. Phys. 395, 636 (2019).

    Article  Google Scholar 

  9. R. Jurado, J. Pallares, J. Gavalda, and X. Ruiz, Int. J. Therm. Sci. 142, 205 (2019).

    Article  CAS  Google Scholar 

  10. V. Yasnou, A. Mialdun, D. Melnikov, and V. Shevtsova, Int. J. Heat Mass. Transf. 143, 118480 (2019).

    Article  CAS  Google Scholar 

  11. M. Sarkar, J. C. Riedl, G. Demouchy, et al., Eur. Phys. J. E 42 (6), 72 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. A. Mojtabi, A. Khouzam, L. Yacine, and M. C. Charrier-Mojtabi, Int. J. Heat Mass. Transf. 139, 1037 (2019).

    Article  Google Scholar 

  13. B. Seta, A. Errarte, D. Dubert, J. Gavalda, M. M. Bou-Ali, and X. Ruiz, Acta Astronaut. 160, 442 (2019).

    Article  CAS  Google Scholar 

  14. A. Firoozabadi, K. Ghorayeb, and K. Shukla, AIChE J. 46, 892 (2000).

    Article  CAS  Google Scholar 

  15. L. J. T. M. Kemper, J. Chem. Phys. 115, 6330 (2001).

    Article  CAS  Google Scholar 

  16. S. Srinivasan and M. Z. Saghir, Can. J. Chem. Eng. 91, 1168 (2013).

    Article  CAS  Google Scholar 

  17. I. V. Stepanova, Commun. Nonlin. Sci. 20, 684 (2015).

    Article  Google Scholar 

  18. D. V. Zlenko and S. V. Stovbun, Russ. J. Phys. Chem. B 9, 667 (2015).

    Article  CAS  Google Scholar 

  19. A. V. Mokshin and B. N. Galimzyanov, Russ. J. Phys. Chem. B 11, 473 (2017).

    Article  CAS  Google Scholar 

  20. D. Macgowan and D. J. Evans, Phys. Rev. A 34, 2133 (1986).

    Article  CAS  Google Scholar 

  21. C. Nieto-Draghi and J. B. Avalos, Mol. Phys. 101, 2303 (2003).

    Article  CAS  Google Scholar 

  22. T. Ikeshoji and B. Hafskjold, Mol. Phys. 81, 251 (1994).

    Article  CAS  Google Scholar 

  23. M. Zhang and F. Muller-Plathe, J. Chem. Phys. 123, 124502 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. C. Nirto-Draghi and J. B. Avalos, J. Chem. Phys. 122, 114503 (2005).

    Article  CAS  Google Scholar 

  25. F. A. Furtado, A. J. Silveira, C. R. A. Abreu, and F. W. Tavares, Braz. J. Chem. Eng. 32, 683 (2015).

    Article  CAS  Google Scholar 

  26. S. Yeganegi and M. Zolfaghari, Fluid Phase Equilib. 243, 161 (2006).

    Article  CAS  Google Scholar 

  27. P. A. Artola and B. Rousseau, J. Chem. Phys. 143, 174503 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. B. Hafskjold, Eur. Phys. J. E 40, 4 (2017).

    Article  PubMed  CAS  Google Scholar 

  29. P. Wirnsberger, D. Frenkel, and C. Dellago, J. Chem. Phys. 143, 124104 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. S. Antoun, M. Z. Saghir, and S. Srinivasan, J. Chem. Phys. 148, 104507 (2018).

    Article  PubMed  CAS  Google Scholar 

  31. S. Antoun, M. Z. Saghir, and S. Srinivasan, J. Chem. Phys. 149, 034502 (2018).

    Article  PubMed  CAS  Google Scholar 

  32. S. H. Mozaffari, S. Srinivasan, and M. Z. Saghir, J. Therm. Sci. Eng. Appl. 9, 031011 (2017).

    Article  CAS  Google Scholar 

  33. Z. A. Makrodimitri, D. J. M. Unruh, and I. G. Economou, J. Phys. Chem. B 115, 1429 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. D. A. D. Mezquia, Z. Wang, E. Lapeira, M. Klein, S. Wiegand, and M. M. Bou-Ali, Eur. Phys. J. E 37 (11), 106 (2014).

    Article  CAS  Google Scholar 

  35. I. Lizarraga, M. M. Bou-Ali, and C. Santamaría, Micrograv. Sci. Tech. 30 (4), 1 (2018).

    Article  CAS  Google Scholar 

  36. A. D. M. David, M. M. Bou-Ali, J. A. Madariaga, and C. Santamaría, J. Chem. Phys. 140, 084503 (2014).

    Article  CAS  Google Scholar 

  37. E. I. Mateev, V. A. Aleshkevich, F. V. Potemkin, N. V. Minaev, and V. M. Gordienko, Russ. J. Phys. Chem. B 13, 1214 (2019).

    Article  Google Scholar 

  38. A. E. Galashev, O. R. Rakhmanova, and L. A. Elshina, Russ. J. Phys. Chem. B 12, 403 (2018).

    Article  CAS  Google Scholar 

  39. M. G. Martin and J. I. Siepmann, J. Phys. Chem. B 102, 2569 (1998).

    Article  CAS  Google Scholar 

  40. Z. A. Makrodimitri, D. J. M. Unruh, and I. G. Economou, Phys. Chem. Chem. Phys. 14, 4133 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. K. R. Harris, J. Chem. Soc. Faraday Trans. 78, 2265 (1982).

    Article  CAS  Google Scholar 

  42. V. Sechenyh, J. C. Legros, A. Mialdun, J. M. Ortiz de Zárate, and V. Shevtsova, J. Phys. Chem. B 120, 535 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The present work is supported financially by the National Natural Science Foundation of China under the grant nos. 51676031 and 51976087.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruquan Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaoyu Chen, Liang, R., Wang, Y. et al. Boundary-Driven Non-Equilibrium Molecular Dynamics Calculation of the Soret Coefficient in n-Hexane/n-Dodecane Mixtures. Russ. J. Phys. Chem. B 15, 539–546 (2021). https://doi.org/10.1134/S1990793121030180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121030180

Keywords:

Navigation