Skip to main content
Log in

Polytropic Processes in the Lower Thermosphere

  • CHEMICAL PHYSICS OF ATMOSPHERIC PHENOMENA
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The question of the application of Poisson’s law PVγ = сonst in the analysis of spatiotemporal variations in the parameters of the neutral atmosphere in this region is considered in relation to the existence of heat fluxes in the mesosphere-lower thermosphere (MLT). Poisson’s law is valid for adiabatic processes, i.e., in the absence of heat transfer (ΔQ = 0). When internal gravitational waves propagate in this region, which, when dissipated, transfer energy and angular momentum to the medium and can enhance turbulent motions, as well as during the development of the frequently observed dynamic and convective instabilities, the processes in MLT can also be nonadiabatic. In this study, we obtained the values ​​of the n index in the lower thermosphere for polytropic processes PVn = const, when only the heat capacity is constant. To estimate the n index, we use measurements of the temperature and density of the neutral atmosphere by the method of resonant scattering on artificial periodic irregularities of the ionospheric plasma. It is shown that above the turbopause, the polytropic index n lies in the range of 1.8 to 2. The fact that n > γ indicates the importance of taking the heat transfer in the lower thermosphere into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Arctic Lidar Observatory for Middle Atmosphere Research (69° N, 16° E).

  2. Sounding of the Atmosphere using Broadband Emission Radiometry.

  3. Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics.

  4. Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere.

REFERENCES

  1. R. J. States and C. S. Gardner, J. Atmos. Sci. 57, 66 (1999).

    Article  Google Scholar 

  2. C. S. Gardner, Yu. Zhao, and A. Z. Liu, J. Atmos. Sol.-Terr. Phys. 64, 923 (2002).

    Article  Google Scholar 

  3. N. N. Shefov, A. I. Semenov, and V. Yu. Khomich, Radiation of the Upper Atmosphere—an Indicator of its Structure and Dynamics (Geos, Moscow, 2006) [in Russian].

    Google Scholar 

  4. A. Schöch, G. Baumgarten, and J. Fiedler, Ann. Geophys. 26, 1681 (2008). https://doi.org/10.5194/angeo-26-1681-2008

    Article  Google Scholar 

  5. C. Y. She, S. Chen, Z. Hu, et al., Geophys. Rev. Lett. 27, 3289 (2000).

    Article  CAS  Google Scholar 

  6. E. Remsberg, G. Lingenfelser, V. L. Harvey, et al., J. Geophys. Res. 108 (D20), 4628 (2003). https://doi.org/10.1029/2003JD003720

    Article  Google Scholar 

  7. C. J. Mertens, F. J. Schmidlin, R. A. Goldberg, et al., Geophys. Rev. Lett. 31, L03105 (2004). https://doi.org/10.1029/2003GL018605

    Article  CAS  Google Scholar 

  8. D. Offermann, M. Jarisch, H. Schmidt, et al., J. Atmos. Sol.-Terr. Phys. 69, 2139 (2007). https://doi.org/10.1016/j.jastp.2007.05.012.2007

    Article  Google Scholar 

  9. S. R. John and K. K. Kumar, J. Geophys. Res. 117, A10310 (2012). https://doi.org/10.1029/2012JA018172

    Article  Google Scholar 

  10. V. S. Kostsov and Yu. M. Timofeev, Bull. Russ. Acad. Sci.: Phys. 37, 728 (2001).

    Google Scholar 

  11. V. S. Kostsov and Yu. M. Timofeev, Bull. Russ. Acad. Sci.: Phys. 41, 741 (2005).

    Google Scholar 

  12. A. Szewczyk, B. Strelnikov, M. Rapp, et al., Ann. Geophys. 31, 775 (2013). https://doi.org/10.5194/angeo-31-775-2013

    Article  Google Scholar 

  13. V. V. Belikovich, E. A. Benediktov, A. V. Tolmacheva, and N. V. Bakhmet’eva, Ionospheric Research by Means of Artificial Periodic Irregularities, Germany, Copernicus, 2002, translated by Drs. M. Fӧrster and M.T. Rietveld.

  14. A. V. Tolmacheva, N. V. Bakhmetieva, G. I. Grigoriev, and E. E. Kalinina, Adv. Space Res. 56, 1185 (2015).

    Article  Google Scholar 

  15. A. V. Tolmacheva, N. V. Bakhmetieva, G. I. Grigoriev, and M. N. Egerev, Adv. Space Res. 64, 1968 (2019).https://doi.org/10.1016/j.asr.2019.05.002

    Article  Google Scholar 

  16. A. V. Tolmacheva, V. V. Belikovich, and E. E. Kalinina, Geomagn. Aeron. 49, 239 (2009).

    Article  Google Scholar 

  17. N. V. Bakhmet’eva, V. N. Bubukina, V. D. Vyakhirev, G. I. Grigor’ev, E. E. Kalinina, and A. V. Tolmacheva, Russ. J. Phys. Chem. B 11, 1017 (2017).

    Article  Google Scholar 

  18. N. V. Bakhmetieva, G. I. Grigoriev, A. V. Tolmacheva, and I. N. Zhemyakov, Atmosphere 10, 450 (2019). https://doi.org/10.3390/atmos10080450

    Article  CAS  Google Scholar 

  19. N. V. Bakhmet’eva, G. I. Grigor’ev, A. V. Tolmacheva, and E. E. Kalinina, Russ. J. Phys. Chem. B 12, 510 (2018).

    Article  Google Scholar 

  20. V. V. Belikovich and G. I. Grigor’ev, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 30, 347 (1987).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, grant no. 18-05-00293 and was supported by the Russian Science Foundation grant no. 20-17-00050.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Tolmacheva or G. I. Grigoriev.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolmacheva, A.V., Grigoriev, G.I. Polytropic Processes in the Lower Thermosphere. Russ. J. Phys. Chem. B 15, 582–589 (2021). https://doi.org/10.1134/S199079312103012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312103012X

Keywords:

Navigation