Skip to main content
Log in

Value-Based Numerical Identification and Analysis of Critical States of Chemical Reaction Systems

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A value-based method for the numerical identification and analysis of critical (limiting) states in chemical reaction systems is described. The extreme behavior of the reaction system, in which its behavior changes qualitatively with small changes in the initial parameters, is proposed to use when evaluating the critical states of reactions. The problem of the calculus of variations with the target condition is solved using the Pontryagin maximum principle. The value-based approach, which consists in the Hamiltonian systematization of kinetic equations of multistep reactions, is distinguished by the relative simplicity of the calculation procedures and makes it possible to determine the values, i.e., the kinetic significances of the individual chemical steps and chemical components of the reaction. According to the pressure–temperature (PT) diagrams, three known self-ignition limits are described using the kinetic model of a reacting mixture of hydrogen and oxygen as an example, which includes forty two separate steps and eight chemical components. The existence of the fourth new degenerate limit in the H2/O2 reaction system is predicted. The limiting phenomena are chemically interpreted by identifying the value-based numerical subordination of chemical components and individual steps of the kinetic mechanism of the reaction of hydrogen with oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. N. Semenov, Chemical Kinetics and Chain Reactions (Clarendon, Oxford, 1935).

    Google Scholar 

  2. N. N. Semenov, Some Problems in Chemical Kinetics and Reactivity (Elsevier, Amsterdam, 2013), Vol. 1.

    Google Scholar 

  3. U. Maas and J. Warnatz, Combust. Flame 74, 53 (1988).

    Article  CAS  Google Scholar 

  4. H. Wu, G. Cao, and M. Morbidelli, J. Phys. Chem. 97, 8422 (1993).

    Article  CAS  Google Scholar 

  5. A. Lidor, D. Weihs, and E. Sher, in Proceedings of the 55th AIAA Aerospace Sci. Meeting (AIAA, USA, 2017), Vol. 1, p. 13634.

  6. V. V. Azatyan, Z. S. Andrianova, and A. N. Ivanova, Kinet. Catal. 51, 337 (2010).

    Article  CAS  Google Scholar 

  7. A. N. Ivanova, Z. S. Adrianova, and V. V. Azatyan, Khim. Fiz. 17 (8), 91 (1998).

    CAS  Google Scholar 

  8. W. Liang and C. K. Law, Phys. Chem. Chem. Phys. 20, 742 (2018).

    Article  CAS  Google Scholar 

  9. X. Wang and C. K. Law, J. Chem. Phys. 138, 134305 (2013).

    Article  Google Scholar 

  10. L. B. Newcomb, M. E. Marucci, and J. R. Green, Phys. Chem. Chem. Phys. 20, 15746 (2018).

    Article  CAS  Google Scholar 

  11. V. Ya. Basevich, A. A. Belyaev, S. M. Frolov, and F. S. Frolov, Russ. J. Phys. Chem. B 13, 75 (2019).

    Article  CAS  Google Scholar 

  12. L. A. Tavadyan and G. A. Martoyan, Analysis of Kinetic Models of Chemical Reaction Systems. Value Approach (Nova Science, New York, 2014).

    Google Scholar 

  13. G. A. Martoyan and L. A. Tavadyan, Lect. Notes Comput. Sci. 3044, 313 (2004).

    Article  Google Scholar 

  14. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, et al., Mathematical Theory of Optimal Processes (Macmillan, New York, 1964).

    Google Scholar 

  15. A. G. Kurosh, The Fundamentals of Higher Algebra (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  16. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum, New York, 1969).

    Google Scholar 

  17. B. Lewis and G. von Elbe, Combustion, Flames and Explosions of Gases (Elsevier, Amsterdam, 2013).

    Google Scholar 

  18. Ó. Connaire, H. J. Curran, J. M. Simmie, et al., Int. J. Chem. Kinet. 36, 603 (2004).

    Article  Google Scholar 

  19. V. Li, Z. Zhao, A. Kazakov, et al., Int. J. Chem. Kinet. 36, 566 (2004).

    Article  CAS  Google Scholar 

  20. B. Gottwald and G. Wanner, Simulation 37, 169 (1981).

    Article  CAS  Google Scholar 

  21. G. A. Martoyan and L. A. Tavadyan, Khim. Fiz. 17 (5), 24 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Tavadyan.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavadyan, L.A., Martoyan, G.A. Value-Based Numerical Identification and Analysis of Critical States of Chemical Reaction Systems. Russ. J. Phys. Chem. B 15, 447–456 (2021). https://doi.org/10.1134/S1990793121030118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121030118

Keywords:

Navigation