Skip to main content
Log in

Influence of Particles of the Junge Layer on the Rate of Ozone Destruction in the Lower Stratosphere

  • CHEMICAL PHYSICS OF ATMOSPHERIC PHENOMENA
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The paper presents the results of calculations of the dynamics of ozone destruction in the lower stratosphere, carried out taking into account the heterogeneous chemical reactions (HCRs) proceeding at a rate of w(–O3)HCRs, cm–3 s–1, with the participation of particles of the Junge layer (background aerosol). The dramatic decline in w(–O3)HCRs found in the calculations at altitudes less than 16 km in comparison with the rate of ozone loss calculated with the participation of gaseous chemical reactions (w(–O3)) indicates the inhibitory role of aerosol particles. This is due to the capture of N2O5 molecules from the air by aerosol particles. Their rapid runoff entails a sharp decrease in the concentrations of components of the NOx family in air, as well as a less pronounced decrease in the concentrations of components of the HOx, and Ox families involved in the destruction of ozone. At higher altitudes of 16 to 22 km, magnitude w(–O3)HCRs, in contrast, turns out to be slightly higher than w(–O3); and it affects the acceleration of the destruction process with the components of the HOx and ClOx families. The increased level of their concentrations and rates of reactions with ozone is due to the reduced content of the components of the NOx family in the air. This positive effect of the HCRs involving aerosol particles in w(–O3)HCRs practically degenerates, but at even higher altitudes. This is due to the decrease in the content of aerosol particles and the acceleration of the photodissociation of molecules N2O5(g) \(\xrightarrow{{h{{\nu }}}}\) NO3(g) + NO2(g), which on the whole is accompanied by the suppression of the process of their capture by particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. K. Larin, A. E. Aloyan, and A. N. Ermakov, Khim. Fiz. 36 (1), 90 (2017).

    Google Scholar 

  2. C. E. Junge, C. W. Chagnon, and J. E. Manson, J. Meteorol. 18, 81 (1961).

    Article  Google Scholar 

  3. I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, E. I. Zelenina, T. C. Volchenko, and E. O. Panin, Russ. J. Phys. Chem. B 12, 58 (2018).

    Article  CAS  Google Scholar 

  4. V. V. Zelenov, E. V. Aparina, V. I. Kozlovskiy, I. V. Sulimenkov, and A. E. Nosyrev, Russ. J. Phys. Chem. B 12, 343 (2018).

    Article  CAS  Google Scholar 

  5. A. E. Aloyan, A. N. Yermakov, and V. O. Arutyunyan, Russ. J. Phys. Chem. B 13, 214 (2019).

    Article  CAS  Google Scholar 

  6. R. J. Salawitch, S. C. Wofsy, P. O. Wennberg, et al., Geophys. Res. Lett. 21, 2547 (1994).

    Article  CAS  Google Scholar 

  7. I. K. Larin, A. E. Aloyan, and A. N. Ermakov, Russ. J. Phys. Chem. B 10, 860 (2016).

    Article  CAS  Google Scholar 

  8. C. Voigt, H. Schlager, B. P. Luo, et al., Atmos. Chem. Phys. 5, 1371 (2005).

    Article  CAS  Google Scholar 

  9. http://dataportal.ucar.edu/metadata/acd/software/Socrates/Socrates.thredds.xml.

  10. G. Myhre, T. F. Berglen, C. L. E. Myhre, et al., Tellus 56B, 294 (2004).

    Article  CAS  Google Scholar 

  11. http://www.aim.env.uea.ac.uk/aim/aim.php.

  12. D. R. Hanson, J. Phys. Chem. A 102, 4794 (1998).

    Article  CAS  Google Scholar 

  13. Q. Shi, J. T. Jayne, C. E. Kolb, et al., J. Geophys. Res. 106, 24259 (2001).

    Article  CAS  Google Scholar 

  14. I. K. Larin, Russ. J. Phys. Chem. B 11, 189 (2017).

    Article  CAS  Google Scholar 

  15. G. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd ed. (Springer, Montreal, Canada, 2005).

    Book  Google Scholar 

  16. D. J. Jacob, Introduction to Atmospheric Chemistry (Princeton Univ. Press, Princeton, 1999).

    Google Scholar 

  17. T. Shimazaki, Minor Constituents in the Middle Atmosphere (Terra Sci., Tokyo, Japan, 1985).

    Google Scholar 

  18. K. S. Carslaw, T. Peter, and S. L. Clegg, Rev. Geophys. 35, 125 (1997).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 19-05-00080 and 19-05-50007 (Microworld)) and a state assignment of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences (registration number AAAA-A20-120011390097-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. K. Larin or A. E. Aloyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larin, I.K., Aloyan, A.E. & Ermakov, A.N. Influence of Particles of the Junge Layer on the Rate of Ozone Destruction in the Lower Stratosphere. Russ. J. Phys. Chem. B 15, 577–581 (2021). https://doi.org/10.1134/S199079312103009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312103009X

Keywords:

Navigation