Skip to main content
Log in

Delay in Response of Global Electron Content and Electron Concentration at Various Altitudes to 27-Day Variations in Solar Activity

  • CHEMICAL PHYSICS OF ATMOSPHERIC PHENOMENA
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

We investigate the influence of 27-day variations in solar activity related to the rotation of the Sun around its axis on the thermosphere–ionosphere system at different latitudes and heights, using the results of the calculations of the model of the Earth’s upper atmosphere. Based on the results of the model calculations, related processes in the thermosphere–ionosphere system were analyzed in the period from June 20 to July 21, 2014. There is a clear reaction to the daytime electron concentration Ne in the ionosphere for 27-day variations of the solar radiation flux (index F10.7). Using comparative and correlational analyses, we revealed the delay in the variations of the daytime electron concentration values calculated in the Ne model at different heights, including at the maximum of the F2-layer of the ionosphere (NmF2) and the total electron content and global electron content regarding changes F10.7. It is shown that changes in the O/N2 ratio are the main possible reasons for the delay. The revealed two-day lag in the global electron content is consistent with the results obtained earlier from the observational data. The height structure of the delay Ne relative to F10.7 is discussed. The results of the calculations over the ionospheric stations of the Northern Hemisphere showed that the maximum delay of variations Ne relative to F10.7 is obtained in high and low latitudes, and less at the subauroral and middle latitudes. It is shown that the lag of variations in the total electron content relative to F10.7 is always less than in the case of NmF2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. L. Afraimovich, E. I. Astaf’eva, and I. V. Zhivet’ev, Dokl. Akad. Nauk 409, 399 (2006).

    Google Scholar 

  2. E. L. Afraimovich, E. I. Astaf’eva, I. V. Zhivet’ev, A. V. Oinats, and Yu. V. Yasyukevich, Geomagn. Aeron. 48, 187 (2008).

    Article  Google Scholar 

  3. K. G. Ratovsky, M. V. Klimenko, Yu. V. Yasyukevich, A. M. Vesnin, and V. V. Klimenko, Russ. J. Phys. Chem. B 14, 862 (2020). https://doi.org/10.31857/S0207401X20100106

    Article  CAS  Google Scholar 

  4. M. N. Fatkullin, Itogi Nauki Tekh., Ser.: Geomagn. Vys. Sloi Atmosf. 4, 6 (1978).

    Google Scholar 

  5. E. A. Araujo-Pradere, T. J. Fuller-Rowell, M. V. Codrescu, et al., Radio Sci. 40, RS5009 (2005). https://doi.org/10.1029/2004RS003179

    Article  Google Scholar 

  6. J. Lei, L. Liu, W. Wan, et al., Radio Sci. 40, RS2008 (2005). https://doi.org/10.1029/2004RS003106

    Article  Google Scholar 

  7. L. Liu, W. Wan, B. Ning, et al., J. Geophys. Res. 111, A08304 (2006). https://doi.org/10.1029/2006JA011598

    Article  CAS  Google Scholar 

  8. A. V. Oinats, K. G. Ratovsky, and G. V. Kotovich, Adv. Space Res. 37, 1018 (2006). https://doi.org/10.1016/j.asr.2005.12.011

    Article  Google Scholar 

  9. K. G. Ratovsky, A. V. Medvedev, and M. V. Tolstikov, Adv. Space Res. 55, 2041 (2015). https://doi.org/10.1016/j.asr.2014.08.001

    Article  Google Scholar 

  10. A. R. Abdullaev, A. V. Markov, M. V. Klimenko, K. G. Ratovskii, N. A. Koren’kova, V. S. Leshchenko and V. A. Panchenko, Russ. J. Phys. Chem. B 11, 1012 (2017). https://doi.org/10.7868/S0207401X17120020

    Article  CAS  Google Scholar 

  11. N. V. Chirik, M. V. Klimenko, A. T. Karpachev, K. G. Ratovskii, V. V. Klimenko, V. S. Leshchenko, and N. A. Koren’kova, Russ. J. Phys. Chem. B 12, 782 (2018). https://doi.org/10.1134/S199079311804005X

    Article  CAS  Google Scholar 

  12. S. I. Akasofu and S. Chapmen, Solar-Terrestrial Physics (Pergamon, Oxford, 1972).

    Google Scholar 

  13. N. Jakowski, B. Fichtelmann, and A. Jungstand, J. Atmos. Terr. Phys. 53, 1125 (1991). https://doi.org/10.1016/0021-9169(91)90061-B

    Article  CAS  Google Scholar 

  14. A. V. Oinats, K. G. Ratovsky, and G. V. Kotovich, Adv. Space Res. 42, 639 (2008). https://doi.org/10.1016/j.asr.2008.02.009

    Article  Google Scholar 

  15. D. Ren, J. Lei, W. Wang, et al., J. Geophys. Res. Space. Phys. 123, 7906 (2018). https://doi.org/10.1029/2018JA025835

    Article  Google Scholar 

  16. M. V. Klimenko, A. T. Karpachev, K. G. Ratovsky, et al., in Proceedings of the 2019 Russian Open Conference. on Radio Wave Propagation RWP (IEEE, USA, 2019), p. 117. https://doi.org/10.1109/RWP.2019.8810245

  17. E. Schmölter, J. Berdermann, N. Jakowski, et al., Ann. Geophys. 38, 149 (2020). https://doi.org/10.5194/angeo-38-149-2020

    Article  Google Scholar 

  18. Yu. N. Korenkov, V. V. Klimenko, M. Forster, et al., J. Geophys. Res. 103 (A7), 14697 (1998). https://doi.org/10.1029/98JA00210

    Article  CAS  Google Scholar 

  19. M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, Geomagn. Aeron. 46, 457 (2006). https://doi.org/10.1134/S0016793206040074

    Article  Google Scholar 

  20. M. V. Klimenko, V. V. Klimenko, A. T. Karpachev, et al., Adv. Space Res. 55, 2020 (2015). https://doi.org/10.1016/j.asr.2014.12.032

    Article  Google Scholar 

  21. M. V. Klimenko, V. V. Klimenko, K. G. Ratovsky, et al., Adv. Space Res. 56, 1951 (2015). https://doi.org/10.1016/j.asr.2015.07.019

    Article  CAS  Google Scholar 

  22. M. V. Klimenko, V. V. Klimenko, I. E. Zakharenkova, K. G. Ratovsky, A. S. Yasyukevich, and Yu. V. Yasyuke-vich, Russ. J. Phys. Chem. B 13, 884 (2019). https://doi.org/10.1134/S0207401X19070082

    Article  CAS  Google Scholar 

  23. A. A. Nusinov and E. A. Bruevich, Geomagn. Aeron. 24, 529 (1984).

    CAS  Google Scholar 

  24. M. V. Klimenko, F. S. Bessarab, T. V. Sukhodolov, V. V. Klimenko, Yu. N. Koren’kov, I. E. Zakharenkova, N. V. Chirik, P. A. Vasil’ev, D. V. Kulyamin, Kh. Shmidt, B. Funke, and E. V. Rozanov, Russ. J. Phys. Chem. B 12, 760 (2018). https://doi.org/10.1134/S0207401X18070105

    Article  CAS  Google Scholar 

  25. V. V. Klimenko, M. V. Klimenko, F. S. Bessarab, T. V. Sukhodolov, Yu. N. Koren’kov, B. Funke, and E. V. Rozanov, Russ. J. Phys. Chem. B 13, 720 (2019). https://doi.org/10.1134/S0207401X19070070

    Article  CAS  Google Scholar 

  26. V. V. Klimenko, M. V. Klimenko, F. S. Bessarab, et al., Adv. Space Res. 64, 1854 (2019). https://doi.org/10.1016/j.asr.2019.06.029

    Article  Google Scholar 

  27. F. S. Bessarab, T. V. Sukhodolov, M. V. Klimenko, et al., Adv. Space Res. 67, 133 (2021).

    Article  CAS  Google Scholar 

  28. E. L. Afraimovich, E. I. Astafyeva, A. V. Oinats, et al., Ann. Geophys. 26, 335 (2008). https://doi.org/10.5194/angeo-26-335-2008

    Article  Google Scholar 

  29. A. B. Christensen, L. J. Paxton, S. Avery, et al., J. Geophys. Res. 108 (A12), 1451 (2003). https://doi.org/10.1029/2003JA009918

    Article  CAS  Google Scholar 

  30. A. S. Yasyukevich, M. V. Klimenko, Yu. Yu. Kulikov, et al., Soln.-Zem. Fiz. 4 (4), 62 (2018). https://doi.org/10.12737/szf-44201807

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank NASA’s Space Physics Data Facility (SPDF) for the use of solar indices via the website http://omniweb.gsfc.nasa.gov/form/dx1.html.

Funding

This study was carried out with financial support from the Russian Foundation for Basic Research as part of scientific project no. 18-55-52006 MNT_a and by the Ministry of Education and Science of the Russian Federation (fundamental research program II.16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Klimenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G. et al. Delay in Response of Global Electron Content and Electron Concentration at Various Altitudes to 27-Day Variations in Solar Activity. Russ. J. Phys. Chem. B 15, 566–571 (2021). https://doi.org/10.1134/S1990793121030052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121030052

Keywords:

Navigation