Skip to main content
Log in

Effect of the Polyvinyl Butyral Content on the Combustion Mode of the (Ti + C) + xNi Granular Mixture

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this paper, we study the effect of the polyvinyl butyral content (0–2.3%) on the combustion rate and phase composition of the (Ti + C) + xNi granular mixture, where x = 0, 5, 10, 15, and 20 wt %. At an increased content of the binder, for the first time, a convective combustion mode is discovered due to the ignition of the surface of granules with hot gaseous decomposition products of polyvinyl butyral. This mode is characterized by a higher rate of propagation of the reaction front than follows from the filtration combustion theory. The mechanism for the occurrence of nondecomposed polyvinyl butyral behind the ignition front is explained. According to the X-ray phase analysis data, the phase composition of combustion products does not change with a change in the polyvinyl butyral and nickel content in the mixture and includes only two phases: TiC and Ni. It is shown that when scaling the process of obtaining composite powders from a granular charge (Ti + C) + xNi, it is necessary to ensure the implementation of the conductive combustion mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. L. Huang, H. Y. Wang, F. Qiu, and Q. C. Jiang, Mat. Sci. Eng., A 422, 309 (2006). https://doi.org/10.1016/j.msea.2006.02.019

    Article  CAS  Google Scholar 

  2. H. Boutefnouchet, C. Curfs, A. Triki, A. Boutefnouchet, and D. Vrel, Powder Technol. 2017, 443 (2012). https://doi.org/10.1016/j.powtec.2011.10.061

    Article  CAS  Google Scholar 

  3. Y. F. Yang, H. Y. Wang, J. Zhang, R. Y. Zhaoa, Y. H. Liang, and Q. C. Jiang, J. Am. Ceram. Soc. 91, 2736 (2008). https://doi.org/10.1111/j.1551-2916.2008.02486.x

    Article  CAS  Google Scholar 

  4. Y. F. Yang, H. Y. Wang, R. Y. Zhao, Y. H. Liang, L. Zhan, and Q. C. Jiang, J. Alloys Compd. 460, 276 (2008). https://doi.org/10.1016/j.jallcom.2007.06.010

    Article  CAS  Google Scholar 

  5. Y. F. Yang, H. Y. Wang, Y. H. Liang, R. Y. Zhaoa, and Q. C. Jiang, Mater. Sci. Eng., A 474, 355 (2008). https://doi.org/10.1016/j.msea.2007.04.061

    Article  CAS  Google Scholar 

  6. N. A. Kochetov, A. S. Rogachev, and Yu. S. Pogozhev, Izv. Vyssh. Uchebn. Zaved., Porshk. Metall. Funkts. Pokryt., No. 3, 31 (2009).

  7. B. S. Seplyarskii, A. G. Tarasov, and R. A. Kochetkov, Russ. J. Phys. Chem. B 7, 313 (2013).

    Article  CAS  Google Scholar 

  8. A. G. Tarasov, B. S. Seplyarskii, R. A. Kochetkov, and Yu. N. Barinov, Russ. J. Phys. Chem. B 10, 284 (2016). https://doi.org/10.7868/S0207401X16030110

    Article  CAS  Google Scholar 

  9. B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, N. I. Abzalov, and M. A. Alymov, Inorg. Mater. 55, 1104 (2019). https://doi.org/10.1134/S0002337X19110113

    Article  Google Scholar 

  10. V. E. Badalyan and Yu. P. Kuleshova, Production and Application of Polyvinyl Butyral (NIITEKhIM, Moscow, 1984) [in Russian].

  11. A. G. Merzhanov and A. S. Mukas’yan, Solid Flame Combustion (Torus Press, Moscow, 2007) [in Russian].

    Google Scholar 

  12. O. V. Lapshin, V. G. Prokof’ev, and V. K. Smolyakov, Int. J. Self-Propag. High-Temp. Synth. 27, 14 (2018). https://doi.org/10.3103/S1061386218010041

    Article  CAS  Google Scholar 

  13. B. S. Seplyarskii and R. A. Kochetkov, Russ. J. Phys. Chem. B 11, 798 (2017). https://doi.org/10.7868/S0207401X17090126

    Article  CAS  Google Scholar 

  14. B. S. Seplyarskii, R. A. Kochetkov, and T. G. Lisina, Combust. Explos., Shock Waves 55, 295 (2019). https://doi.org/10.1134/S0010508219030079

    Article  Google Scholar 

  15. B. S. Seplyarskii, R. A. Kochetkov, and T. G. Lisina, Russ. J. Phys. Chem. B 13, 267 (2019). https://doi.org/10.1134/S0207401X19030063

    Article  CAS  Google Scholar 

  16. A. A. Zenin, A. G. Merzhanov, and G. A. Nersisyan, Fiz. Goreniya Vzryva, No. 1, 79 (1981).

    Google Scholar 

  17. V. A. Knyazik, A. G. Merzhanov, B. V. Solomonov, and A. C. Shteinberg, Fiz. Goreniya Vzryva 21 (3), 69 (1985).

    CAS  Google Scholar 

  18. B. S. Seplyarskii, A. G. Tarasov, and R. A. Kochetkov, Combust. Explos., Shock Waves 49, 555 (2013).

    Article  Google Scholar 

  19. L. K. Gusachenko, V. E. Zarko, A. D. Rychkov, and N. Yu. Shokina, Fiz. Goreniya Vzryva 39 (6), 97 (2003).

    CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-33-90114, Postgraduates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Seplyarskii.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seplyarskii, B.S., Abzalov, N.I., Kochetkov, R.A. et al. Effect of the Polyvinyl Butyral Content on the Combustion Mode of the (Ti + C) + xNi Granular Mixture. Russ. J. Phys. Chem. B 15, 242–249 (2021). https://doi.org/10.1134/S199079312102010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312102010X

Keywords:

Navigation