Skip to main content
Log in

Influence of Sulfate Aerosol in the Lower Stratosphere on the Lifetime of Odd Oxygen

  • CHEMICAL PHYSICS OF ATMOSPHERIC PHENOMENA
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The paper presents the results of calculations of the lifetime of odd oxygen and the concentrations of a number of small components in the lower stratosphere, taking into account chemical reactions in supercooled liquid particles of sulfate aerosol (background aerosol). It is found that N2O5 gas molecules and others captured by the aerosol from the air undergo hydrolysis reactions. Their rapid runoff at altitudes less than 15 km lengthens the lifetime of odd oxygen (Ox), which is caused by a decrease in the concentrations of the components of the NOx family and suppression of their reactions with components of the Ox family. At higher altitudes of 16 to 22 km, the lifetime of odd oxygen, on the contrary, decreases; this is due to the acceleration of the reactions of Ox with components of the HOx and ClOx families, the concentrations of which increase with a decrease in the content of the components of the NOx family in the air. The results indicate that this effect of sulfate aerosol must be taken into account in calculating the dynamics of ozone destruction in the lower stratosphere in catalytic HOx, NOx, ClOx, and Ox cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. K. Larin, Russ. J. Phys. Chem. B 11, 375 (2017).

    Article  CAS  Google Scholar 

  2. I. K. Larin, Russ. J. Phys. Chem. B 11, 189 (2017).

    Article  CAS  Google Scholar 

  3. G. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd ed. (Springer, Montreal, Canada, 2005).

    Book  Google Scholar 

  4. D. J. Jacob, Introduction to Atmospheric Chemistry (Princeton Univ. Press, Princeton, 1999).

    Google Scholar 

  5. T. Shimazaki, Minor Constituents in the Middle Atmosphere (Terra Sci., Tokyo, Japan, 1985).

    Google Scholar 

  6. I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, E. I. Zelenina, T. S. Volchenko, and E. O. Panin, Russ. J. Phys. Chem. B 12, 58 (2018).

    Article  CAS  Google Scholar 

  7. V. V. Zelenov, E. V. Aparina, V. I. Kozlovskiy, I. V. Sulimenkov, and A. E. Nosyrev, Russ. J. Phys. Chem. B 12, 343 (2018).

    Article  CAS  Google Scholar 

  8. A. E. Aloyan, A. N. Ermakov, and V. O. Arutyunyan, Russ. J. Phys. Chem. B 13, 214 (2019).

    Article  CAS  Google Scholar 

  9. C. E. Junge, C. W. Chagnon, and J. E. Manson, J. Meteorol. 18, 81 (1961).

    Article  Google Scholar 

  10. R. P. Turco, R. C. Whitten, and O. B. Toon, Rev. Geophys. 20, 233 (1982).

    Article  CAS  Google Scholar 

  11. I. K. Larin, A. E. Aloyan, and A. N. Ermakov, Russ. J. Phys. Chem. B 10, 860 (2016).

    Article  CAS  Google Scholar 

  12. R. J. Salawitch, S. C. Wofsy, P. O. Wennberg, et al., Geophys. Res. Lett. 21, 2547 (1994).

    Article  CAS  Google Scholar 

  13. C. Voigt, H. Schlager, B. P. Luo, et al., Atmos. Chem. Phys. 5, 1371 (2005).

    Article  CAS  Google Scholar 

  14. G. Myhre, T. F. Berglen, C. L. E. Myhre, et al., Tellus 56B, 294 (2004).

    Article  CAS  Google Scholar 

  15. http:\\www.aim.env.uea.ac.uk/aim/aim.php.

  16. D. R. Hanson, J. Phys. Chem. A 102, 4794 (1998).

    Article  CAS  Google Scholar 

  17. Q. Shi, J. T. Jayne, C. E. Kolb, et al., J. Geophys. Res. 106, 24259 (2001).

    Article  CAS  Google Scholar 

  18. http://dataportal.ucar.edu/metadata/acd/software/Socrates/Socrates.thredds.xml.

  19. K. S. Carslaw, T. Peter, and S. L. Clegg, Rev. Geophys. 35, 125 (1997).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 18-05-00289 and 19-05-00080) and under a government contract at Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences (registration no. AAAA-0047-2018-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Larin.

Additional information

Translated by N. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larin, I.K., Aloyan, A.E. & Yermakov, A.N. Influence of Sulfate Aerosol in the Lower Stratosphere on the Lifetime of Odd Oxygen. Russ. J. Phys. Chem. B 15, 357–361 (2021). https://doi.org/10.1134/S1990793121020081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121020081

Keywords:

Navigation