Skip to main content
Log in

Architecture of Nucleoid in the Dormant Cells of Escherichia coli

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The review presents the results of the experimental studies of the structure of condensed DNA in the nucleoid of the dormant cells of Escherichia coli bacteria that appear in response to starvation stress. The conformation of DNA was studied by synchrotron radiation diffraction and transmission electron microscopy. The series of diffraction experiments revealed a periodic ordered organization (most likely, nanocrystalline) of DNA with DNA-associated proteins in all objects under study subjected to starvation stress: bacteria E. coli, spores and bacteria Bacillus Cereus, and filamentous fungi Umbelopsis ramanniana. A transmission electron microscopy study gave fine visual information about the type of DNA condensation in the nucleoid of the E. coli bacterium. The TEM study made it possible to find the intracellular nanocrystalline, liquid crystalline, and folded nucleosome-like DNA structures. The proportion of specific structure depends on the strain and cultivation conditions. The folded nucleosome-like structure was observed and described in the authors’ original studies for the first time. The electron microscopy studies do not allow direct visualization of DNA; therefore, the DNA conformation is hypothetical. To obtain a clear picture of the DNA structure in intracellular crystals, the crystals were studied in vitro by X-ray macromolecular crystallography and electron microscopy. In contrast to diffraction experiments, the electron microscopy studies made it possible to see DNA traces in thin (2D) DNA–Dps crystals. A hypothetical model of DNA conformation in intracellular nanocrystals was proposed. The results of experiments made it possible to visualize the structures of the lower hierarchical tier of DNA compaction in the nucleoid of dormant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. C. Zimmer, Microcosm: E. Coli and the New Science of Life (Vintage, New York, 2009).

    Google Scholar 

  2. A. Y. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (AIP, New York, 1994).

    Google Scholar 

  3. V. A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. O. G. Stonington and D. E. Pettijohn, Proc. Natl. Acad. Sci. U. S. A. 68, 6 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu. F. Krupyanskii and V. I. Gol’danskii, Phys. Usp. 45, 1131 (2002).

    Article  CAS  Google Scholar 

  6. S. C. Verma, Z. Qian, and S. L. Adhya, PLoS Genet 15, e1008456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. N. Trun and J. Marko, Am. Soc Microbiol. News 64, 276 (1998).

    Google Scholar 

  8. M. Valens, S. Penaud, M. Rossignol, F. Cornet, and F. Boccard, EMBO J. 23, 4330 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Talukder and A. Ishihama, Sci. China Life Sci. 58, 902 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. T. A. Azam and A. Ishihama, J. Biol. Chem. 274, 33105 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. A. Y. Grosberg, S. K. Nechaev, and E. I. Shakhnovich, J. Phys. (Paris) 49, 2095 (1988).

    Article  CAS  Google Scholar 

  12. E. Lieberman-Aiden, N. L. Van Berkum, L. Williams, et al., Science (Washington, DC, U. S.) 326, 289 (2009).

    Article  CAS  Google Scholar 

  13. L. A. Mirny, Chromosome Res. 19, 37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. G. D. Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979).

    Google Scholar 

  15. A. R. Khokhlov and S. K. Nechaev, Phys. Lett. A 112, 156 (1985).

    Article  Google Scholar 

  16. M. H. Zwietering, I. Jongenburger, F. M. Rombouts, and K. van’t Riet, Appl. Environ. Microbiol. 56, 1875 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. E. Chiancone, Front. Biosci. 15, 122 (2010).

    Article  CAS  Google Scholar 

  18. M. de Martino, D. Ershov, P. J. van den Berg, S. J. Tans, and A. S. Meyer, J. Bacteriol. 198, 1662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. Almirón, A. J. Link, D. Furlong, and R. Kolter, Genes Dev. 6, 2646 (1992).

    Article  PubMed  Google Scholar 

  20. L. N. Calhoun and Y. M. Kwon, J. Appl. Microbiol. 110, 375 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. R. A. Grant, D. J. Filman, S. E. Finkel, R. Kolter, and J. M. Hogle, Nat. Struct. Biol. 5, 294 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. D. Frenkiel-Krispin and A. Minsky, J. Struct. Biol. 156, 311 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. E. Tereshkin, K. Tereshkina, N. Loiko, A. Chulichkov, V. Kovalenko, and Y. Krupyanskii, J. Biomol. Struct. Dyn. 37, 2600 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. E. V. Tereshkin, K. B. Tereshkina, V. V. Kovalenko, N. G. Loiko, and Yu. F. Krupyanskii, Russ. J. Phys. Chem. B 13, 769 (2019).

    Article  CAS  Google Scholar 

  25. O. V. Bukharin, A. L. Gintsburg, Yu. M. Romanova, and G. I. El’-Registan, The Mechanisms of Bacterial Survival (Meditsina, Moscow, 2005) [in Russian].

    Google Scholar 

  26. A. G. Tkachenko, Molecular Mechanisms of Stress Responses in Microorganisms (Uro RAN, Yekaterinburg, 2012) [in Russian].

    Google Scholar 

  27. A. Minsky, E. Shimoni, and D. Frenkiel-Krispin, Nat. Rev. Mol. Cell Biol. 3, 50 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. N. Loiko, Y. Danilova, A. Moiseenko, et al., PLoS One 15, e0231562 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y. F. Krupyanskii, N. G. Loiko, D. O. Sinitsyn, K. B. Tereshkina, E. V. Tereshkin, I. A. Frolov, A. L. Chulichkov, D. A. Bokareva, I. S. Mysyakina, Y. A. Nikolaev, G. I. El’-Registan, V. O. Popov, O. S. Sokolova, K. V. Shaitan, and A. N. Popov, Crystallogr. Rep. 63, 594 (2018).

    Article  CAS  Google Scholar 

  30. D. O. Sinitsyn, N. G. Loiko, S. K. Gularyan, A. S. Stepanov, K. B. Tereshkina, A. L. Chulichkov, A. A. Nikolaev, G. I. El-Registan, V. O. Popov, O. S. Sokolova, K. V. Shaitan, A. N. Popov, and Yu. F. Krupyanskii., Russ. J. Phys. Chem. B 11, 833 (2017).

    Article  CAS  Google Scholar 

  31. S. G. Wolf, D. Frenkiel, T. Arad, S. E. Finkel, R. Kolter, and A. Minsky, Nature (London, U.K.) 400, 83 (1999).

    Article  CAS  Google Scholar 

  32. D. Frenkiel-Krispin, I. Ben-Avraham, J. Englander, E. Shimoni, S. G. Wolf, and A. Minsky, Mol. Microbiol. 51, 395 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Z. Reich, E. Wachtel, and A. Minsky, Science (Washington, DC, U. S.) 264 (5164), 1460 (1994).

    Article  CAS  Google Scholar 

  34. G. Santoni, U. Zander, Ch. Muleller-Dieckmann, G. Leonard, and A. Popov, J. Appl. Crystallogr. 50, 1844 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. V. Kovalenko, A. Popov, G. Santoni, N. Loiko, K. Tereshkina, E. Tereshkin, and Y. Krupyanskii, Acta Crystallogr. 76, 568 (2020).

    CAS  Google Scholar 

  36. A. Moiseenko, N. Loiko, K. Tereshkina, Y. Danilova, V. Kovalenko, O. Chertkov, A. V. Feofanov, Y. F. Krupyanskii, and O. S. Sokolova, Biochem. Biophys. Res. Commun. 517, 463 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. V. B. Teif and K. Bohinc, Prog. Biophys. Mol. Biol. 105, 208 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. S. L. Ilca, X. Sun, K. El Omari, A. Kotecha, F. de Haas, F. di Maio, et al., Nature (London, U.K.) 570, 252 (2019).

    Article  CAS  Google Scholar 

  39. N. G. Loiko, N. E. Suzina, V. S. Soina, T. A. Smirnova, M. V. Zubasheva, R. R. Azizbekyan, et al., Microbiology, 703 (2017).

  40. J. A. Speir and J. E. Johnson, Curr. Opin. Struct. Biol. 22, 65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. V. N. Blinov, V. L. Golo, and Y. Krupyanskii, Nanostuct. Math. Phys. Model. 12, 5 (2015).

    Google Scholar 

  42. V. V. Vasilevskaya, A. R. Khokhlov, S. Kidoaki, and K. Yoshikawa, Biopolymers 41, 51 (1997).

    Article  CAS  Google Scholar 

  43. N. Loiko, Y. Danilova, A. Moiseenko, V. Kovalenko, K. Tereshkina, G. I. El-Registan, O. S. Sokolova, and Y. F. Krupyanskii, bioRxiv Cell Biol. (2020).

  44. E. Schrödinger, What is Life? The Physical Aspect of the Living Cell (Cambridge Univ. Press, Cambridge, 1944).

    Google Scholar 

  45. A. Procopio, E. Malucelli, A. Pacureanu, et al., ACS Cent. Sci. 5, 1449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S. Santos, Y. Yang, M. Rosa, et al., Sci. Rep. 9, 17217 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. D. Vanhecke, W. Graber, and D. Studer, Methods Cell Biol. 88, 151 (2008).

    Article  PubMed  Google Scholar 

  48. K. Narayan and S. Subramaniam, Nat. Methods 12, 1021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. H. D. Ou, S. Phan, T. J. Deerinck, A. Thor, M. H. Ellisman, and C. C. O’Shea, Science (Washington, DC, U. S.) 357 (6349), eaag0025 (2017).

Download references

ACKNOWLEDGMENTS

I am grateful to my constant co-authors N.G. Loiko, V.V. Kovalenko, O.S. Sokolova, A.V. Moiseenko, K.B. Tereshkina, G.I. El’-Registan, E.V. Tereshkin, and A.N. Popov for their great contribution to the joint development of this research trend, and to I.V. Gordeeva for her great help in preparing the manuscript.

Funding

This study was financially supported by the Ministry of Science and Education of the Russian Federation (the review was written under government contract no. 0082-2019-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Krupyanskii.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupyanskii, Y.F. Architecture of Nucleoid in the Dormant Cells of Escherichia coli. Russ. J. Phys. Chem. B 15, 326–343 (2021). https://doi.org/10.1134/S199079312102007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312102007X

Keywords:

Navigation