Skip to main content
Log in

Dependence of the Knock Threshold of an H2-Air Mixture With Small Xe Additives

  • COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The effect of a small addition of Xe on the conditions for the occurrence of detonation in an incident shock wave (SW) with a change in its intensity is studied. The experiments are carried out in a shock tube (ST) with mixtures (75 – q)% H2 + 25% air + q% Xe, where q = 0, 0.25, and 0.5. The addition of Xe leads to a shift in the detonation threshold to the region where the conditions are more unfavorable for its occurrence. Moreover, decreasing x from 0.5 to 0.25 causes a stronger shift in the detonation threshold; i.e., dependence x became nonmonotonic. This effect is due to a strong increase in the frequency of high-energy collisions of O2 and Xe in the front compared to the equilibrium behind the wave and the subsequent significant acceleration of the chemical interaction of O2 and H2 behind the front. It is a consequence of the occurrence of a specific translational nonequilibrium in the wave front. This is indicated by the results of similar studies of the effect of replacing a small amount with an inappropriate amount of Xe on the conditions for the onset of detonation for mixtures of 10% H2 + 5% O2 + 85% He. In addition, the results of the performed numerical simulation with mixtures (75 – q)% H2 + 25% air + q% Xe (q = 0.25, 0.5), taking into account the rotational relaxation of О2 and N2 for conditions close to the conditions of the aforementioned experiments, showed the possibility of a nonmonotonic shift of the detonation threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. V. Azatyan, V. M. Prokopenko, N. V. Chapysheva, and K. S. Abramov, Russ. J. Phys. Chem. B 12, 103 (2018).

    Article  CAS  Google Scholar 

  2. A. M. Tereza and E. K. Anderzhanov, Russ. J. Phys. Chem. B 13, 626 (2019).

    Article  CAS  Google Scholar 

  3. P. A. Vlasov, T. S. Demidenko, V. N. Smirnov, A. M. Tereza, and E. V. Atkin, Russ. J. Phys. Chem. B 10, 983 (2016).

    Article  CAS  Google Scholar 

  4. T. V. Bazhenova, A. V. Emelianov, A. V. Eremin, and V. Y. Velicodny, in Proceedings of the International Symposia on Shock Waves ISSW-21, Ed. by A. Howling (Great Keppel, Australia, 1998), p. 195.

  5. V. Yu. Velikodnyi, A. V. Emel’yanov, and A. V. Eremin, Tech. Phys. 44, 1150 (1999).

    Article  CAS  Google Scholar 

  6. A. V. Emelianov, A. V. Eremin, and S. V. Kulikov, Tech. Phys. 58, 647 (2013).

    Article  CAS  Google Scholar 

  7. O. G. Divakov, A. V. Eremin, V. S. Ziborov, and V. E. Fortov, Dokl. Akad. Nauk 373, 487 (2000).

    CAS  Google Scholar 

  8. V. Yu. Velikodnyi and V. A. Bityurin, Khim. Fiz. 16 (9), 14 (1997).

    CAS  Google Scholar 

  9. S. V. Kulikov and G. B. Manelis, Dokl. Chem. 382, 29 (2002).

    Article  CAS  Google Scholar 

  10. S. V. Kulikov, G. B. Manelis, and O. N. Ternovaya, Russ. J. Phys. Chem. B 1, 250 (2007).

    Article  Google Scholar 

  11. S. V. Kulikov and N. A. Chervonnaya, Russ. J. Phys. Chem. B 12, 98 (2018).

    Article  CAS  Google Scholar 

  12. O. I. Dodulat, Yu. Yu. Kloss, and F. G. Cheremisin, Fiz.-Khim. Kinet. Gaz. Din. 14 (1) (2013). http://www.chemphys.edu.ru.

  13. Shock Pipes, Collection of Articles, Ed. by Kh. A. Rakhmatullin and S. S. Semenov (Inostr. Liter., Moscow, 1962) [in Russian].

    Google Scholar 

  14. Ya. B. Zel’dovich, A. P. Genich, and G. B. Manelis, Sov. Phys. Dokl. 24, 756 (1979).

    Google Scholar 

  15. C. V. Kulikov, Shock Waves 7, 25 (1997).

    Article  Google Scholar 

  16. G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).

    Google Scholar 

  17. S. V. Kulikov and P. K. Berzigiyarov, Vychisl. Metody Program. 3 (2), 51 (2002).

    Google Scholar 

  18. A. P. Genich, S. V. Kulikov, G. B. Manelis, V. V. Serikov, and V. E. Yanitskii, Zh. Vychisl. Mat. Mat. Fiz. 26, 1839 (1986).

    Google Scholar 

  19. A. Gaydon and I. Hurle, The Shock Tube in High-Temperature Chemical Physics (Chapman and Hall, London, 1963).

    Google Scholar 

  20. A. V. Bogdanov, G. V. Dubrovskii, A. I. Osipov, and V. M. Strel’chenya, Rotational Relaxation in Gases and Plasma (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  21. S. V. Kulikov, Mat. Model. 11 (3), 96 (1999).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Interdepartmental Supercomputer Center of the Russian Academy of Sciences for providing the computing resources. The authors also thank Yu.P. Myagkov for his help with the experiments and O.N. Ternovaya for her help in processing the calculation results and in carrying out the experiments.

Funding

The study was carried out on the topics of state assignments (registration nos. 0089-2014-0018 and 0089-2019-0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kulikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanov, G.A., Ezhov, V.M., Kulikov, S.V. et al. Dependence of the Knock Threshold of an H2-Air Mixture With Small Xe Additives. Russ. J. Phys. Chem. B 15, 250–258 (2021). https://doi.org/10.1134/S1990793121020032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121020032

Keywords:

Navigation