Skip to main content
Log in

Calculation of the Lowest Resonance 1S State of H Ion by Complex Absorbing Potential Method

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The example of the lowest 1S resonance of the H anion demonstrates that the resonance energy and its width calculated by way of finding the optimal point using the method of the complex absorbing potential has a systematic error, whose magnitude depends on the parameters of the absorbing potential and on the approximation used to solve the Schrödinger equation. It is shown that the accuracy of the calculation of resonance parameters can be improved if you replace finding the optimal point with averaging over the trajectory closure interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFRERENCES

  1. V. V. Kuverova, S. O. Adamson, A. A. Berlin, et al., Adv. Space Res. 64, 1876 (2019).

    Article  CAS  Google Scholar 

  2. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Dokl. Phys. 58, 424 (2013).

    Article  CAS  Google Scholar 

  3. G. V. Golubkov, V. V. Kuverova, G. K. Ozerov, S. O. Adamson, M. G. Golubkov, and I. V. Karpov, Russ. J. Phys. Chem. B 12, 903 (2017).

    Article  Google Scholar 

  4. G. V. Golubkov, M. I. Manzhelii, and L. V. Eppelbaum, Russ. J. Phys. Chem. B 12, 549 (2018).

    Article  CAS  Google Scholar 

  5. J. S. Bell and E. J. Squires, Phys. Rev. Lett. 3, 96 (1959).

    Article  Google Scholar 

  6. G. Jolicard and E. J. Austin, Chem. Phys. Lett. 121, 106 (1985).

    Article  CAS  Google Scholar 

  7. G. Jolicard and E. J. Austin, Chem. Phys. 103, 295 (1986).

    Article  CAS  Google Scholar 

  8. G. Jolicard and J. Humbert, Chem. Phys. 118, 397 (1987).

    Article  CAS  Google Scholar 

  9. G. Jolicard and M. Y. Perrin, Chem. Phys. 116, 1 (1987).

    Article  CAS  Google Scholar 

  10. G. Jolicard, C. Leforestier, and E. J. Austin, J. Chem. Phys. 88, 1026 (1988).

    Article  CAS  Google Scholar 

  11. N. Rom, N. Lipkin, and N. Moiseyev, Chem. Phys. 151, 199 (1991).

    Article  CAS  Google Scholar 

  12. U. V. Riss and H. D. Meyer, J. Phys. B 26, 4503 (1993).

    Article  CAS  Google Scholar 

  13. U. V. Riss and H. D. Meyer, J. Phys. B 28, 1475 (1995).

    Article  CAS  Google Scholar 

  14. T. Sommerfeld, U. V. Riss, H. D. Meyer, et al., J. Phys. B 31, 4107 (1998).

    Article  CAS  Google Scholar 

  15. T. Sommerfeld and L. S. Cederbaum, Phys. Rev. Lett. 80, 3723 (1998).

    Article  CAS  Google Scholar 

  16. T. C. Jagau and A. I. Krylov, J. Phys. Chem. Lett 5, 3078 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. D. Zuev, T. C. Jagau, K. B. Bravaya, et al., J. Chem. Phys. 141, 024102 (2014).

    Article  PubMed  CAS  Google Scholar 

  18. D. Zuev, T. C. Jagau, K. B. Bravaya, et al., J. Chem. Phys. 143, 149901 (2015).

    Article  PubMed  CAS  Google Scholar 

  19. T. C. Jagau and A. I. Krylov, J. Chem. Phys. 144, 054113 (2016).

    Article  PubMed  CAS  Google Scholar 

  20. A. A. Kunitsa, A. A. Granovsky, and K. B. Bravaya, J. Chem. Phys. 146, 184107 (2017).

    Article  CAS  Google Scholar 

  21. S. Feuerbacher, T. Sommerfeld, R. Santra, et al., J. Chem. Phys. 118, 6188 (2003).

    Article  CAS  Google Scholar 

  22. T. C. Jagau, D. Zuev, K. B. Bravaya, et al., J. Phys. Chem. Lett. 5, 310 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. T. C. Jagau, D. Zuev, K. B. Bravaya, et al., J. Phys. Chem. Lett. 6, 3866 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. T. Sommerfeld and R. Santra, Intern. J. Quant. Chem. 82, 218 (2001).

    Article  CAS  Google Scholar 

  25. T. Sommerfeld and H. D. Meyer, J. Phys. B 35, 1841 (2002).

    Article  CAS  Google Scholar 

  26. A. Dreuw, T. Sommerfeld, and L. S. Cederbaum, J. Chem. Phys. 116, 6039 (2002).

    Article  CAS  Google Scholar 

  27. A. Dreuw, T. Sommerfeld, and L. S. Cederbaum, Theor. Chem. Acc. 100, 60 (1998).

    Article  CAS  Google Scholar 

  28. T. C. Jagau, D. B. Dao, N. S. Holtgrewe, et al., J. Phys. Chem. Lett. 6, 2786 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. M. Ehara, Y. Kanazawa, and T. Sommerfeld, Chem. Phys. 482, 169 (2017).

    Article  CAS  Google Scholar 

  30. T. Sommerfeld, Phys. Chem. Chem. Phys. 3, 2394 (2001).

    Article  CAS  Google Scholar 

  31. M. Ehara and T. Sommerfeld, Chem. Phys. Lett. 537, 107 (2012).

    Article  CAS  Google Scholar 

  32. T. Sommerfeld, Phys. Chem. Chem. Phys. 4, 2511 (2002).

    Article  CAS  Google Scholar 

  33. A. A. Kunitsa and K. B. Bravaya, J. Phys. Chem. Lett. 6, 1053 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. M. Ehara, R. Fukuda, and T. Sommerfeld, J. Comput. Chem. 37, 242 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Y. Kanazawa, M. Ehara, and T. Sommerfeld, J. Phys. Chem. A 120, 1545 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. R. Santra, L. S. Cederbaum, and H. D. Meyer, Chem. Phys. Lett. 303, 413 (1999).

    Article  CAS  Google Scholar 

  37. T. Sommerfeld, U. V. Riss, H. D. Meyer, et al., Phys. Rev. Lett. 79, 1237 (1997).

    Article  CAS  Google Scholar 

  38. T. C. Jagau, K. B. Bravaya, and A. I. Krylov, Ann. Rev. Phys. Chem. 68, 525 (2017).

    Article  CAS  Google Scholar 

  39. R. A. Bain, J. N. Bardsley, B. R. Junker, et al., J. Phys. B 7, 2189 (1974).

    Article  CAS  Google Scholar 

  40. S. Zhang and J. Jin, Computation of Special Functions (Wiley New York, 1996).

    Google Scholar 

  41. A. A. Preobrazhenskaya, S. O. Adamson, D. D. Kharlampidi, and A. I. Dement’ev, Russ. J. Phys. Chem. B 10, 133 (2016).

    Article  CAS  Google Scholar 

  42. S. O. Adamson, D. D. Kharlampidi, A. A. Preobrazhenskaya, and A. I. Dement’ev, Russ. J. Phys. Chem. B 11, 894 (2017).

    Article  CAS  Google Scholar 

  43. S. O. Adamson, D. D. Kharlampidi, and A. I. Dementiev, in Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology, Vol. 27 of Progress in Theoretical Chemistry and Physics, Eds. by M. Hotokka, E. Brandas, J. Maruani, and G. Delgado-Barrio (Springer, Cham, 2013), p. 101.

  44. S. Adamson, D. Kharlampidi, and A. Dementiev, J. Chem. Phys. 128, 024101 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. D. D. Kharlampidi, A. I. Dementiev, and S. O. Adamson, Russ. J. Phys. Chem. A 84, 611 (2010).

    Article  CAS  Google Scholar 

  46. S. O. Adamson, D. D. Kharlampidi, and A. I. Dement’ev, Russ. J. Phys. Chem. B 5, 915 (2011).

    Article  CAS  Google Scholar 

  47. A. A. Preobrazhenskaya, S. O. Adamson, D. D. Kharlampidi, and A. I. Dement’ev, Russ. J. Phys. Chem. B 8, 22 (2014).

    Article  CAS  Google Scholar 

  48. M. Bylicki and C. A. Nicolaides, Phys. Rev. A 61, 052509 (2000).

    Article  Google Scholar 

  49. F. Tricomi and A. Erdelyi, Pasif. J. Math. 1, 133 (1951).

    Google Scholar 

  50. H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 1.

    Google Scholar 

  51. D. J. Zvijac, E. J. Heller, and J. C. Light, J. Phys. B 8, 1016 (1975).

    Article  CAS  Google Scholar 

  52. S. O. Adamson, V. V. Kuverova, G. K. Ozerov, G. V. Golubkov, Sh. Sh. Nabiev and M. G. Golubkov, Russ. J. Phys. Chem. B 12, 620 (2018).

    Article  CAS  Google Scholar 

  53. S. O. Adamson, R. J. Buenker, G. V. Golubkov, M. G. Golubkov, and A. I. Dement’ev, Russ. J. Phys. Chem. B 3, 195 (2009).

    Article  Google Scholar 

  54. M. G. Golubkov, G. K. Ozerov, S. O. Adamson, et al., Chem. Phys. 462, 28 (2015).

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out in the framework of State Assignment of the Ministry of Science and Higher Education of the Russian Federation (project no. АААА-А19-119010990034-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Adamson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamson, S.O., Kharlampidi, D.D., Golubkov, G.V. et al. Calculation of the Lowest Resonance 1S State of H Ion by Complex Absorbing Potential Method. Russ. J. Phys. Chem. B 14, 742–751 (2020). https://doi.org/10.1134/S1990793120050164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120050164

Keywords:

Navigation