Skip to main content
Log in

Investigation of Potential of Oxygen Reduction Reaction at Aluminum Doped Carbon Nanocage (Al-C72) as a Catalyst

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS. CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this work, potentials of aluminum doped carbon nanocage (Al–C72) as navel catalyst to oxygen reduction reaction in acidic environment are investigated. In present study, the acceptable reaction paths are examined, and optimum reaction mechanism of oxygen reduction reaction on the surface of Al-doped C72 is recognized. Results indicate that oxygen reduction reaction on Al-doped C72 surface can be proceed through Eley–Rideal (ER) and Langmuir–Hinshelwood (LH) mechanisms. In this work, the calculated initial potential to oxygen reduction reaction on Al-doped C72 surface is 0.30 V, which is smaller than initial potential the on surfaces of platinum-based catalysts (0.45 V). Results indicated that in acidic environment the initial potential for oxygen reduction process can be evaluated as 0.79 V, that correspond to 0.30 V as minimum overpotntial for oxygen reduction process. Results demonstrated that Al-doped C72 is an acceptable catalyst to oxygen reduction process with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. M. Bergthorson, Y. Yavor, J. Palecka, et al., Appl. Energy 186, 13 (2017).

    Article  CAS  Google Scholar 

  2. A. Z. Zhuk, M. S. Vlaskin, A. V. Grigorenko, et al., J. Ceram. Proc. Res. 17, 910 (2016).

    Google Scholar 

  3. S. A. Kislenko, M. S. Vlaskin, and A. Z. Zhuk, Solid State Ionics 293, 1 (2016).

    Article  CAS  Google Scholar 

  4. M. N. Larichev, N. S. Shaitura, and O. O. Laricheva, Russ. J. Phys. Chem. B 2, 757 (2008).

    Article  Google Scholar 

  5. M. N. Larichev and N. S. Shaitura, Izv. Akad. Nauk, Energet. 2, 85 (2010).

    Google Scholar 

  6. N. S. Shaytura and M. N. Laritchev, Curr. Appl. Phys. 10, S66 (2010).

    Article  Google Scholar 

  7. M. N. Larichev, N. S. Shaitura, V. N. Kolokol’nikov, et al., Perspekt. Mater., No. 9, 289 (2010).

  8. M. N. Larichev, O. O. Laricheva, N. S. Shaitura, et al., Izv. Akad. Nauk, Energ., No. 3, 66 (2012).

  9. B. Kaspzyk-Hordern, Adv. Colloid Interface Sci. 110, 19 (2004).

    Article  Google Scholar 

  10. M. N. Larichev, O. O. Laricheva, I. O. Leipunskii, et al., Khim. Fiz. 25 (10), 72 (2006).

    CAS  Google Scholar 

  11. Z. Y. Deng, J. M. F. Ferreira, Y. Tanaka, and J. Ye, J. Am. Ceram. Soc. 90, 1521 (2007).

    Article  CAS  Google Scholar 

  12. A. Fernandez, J. C. Sanchez-Lopez, A. Caballero, et al., J. Microsc. 191, 212 (1998).

    Article  CAS  Google Scholar 

  13. S. S. Razavi-Tousi and J. A. Szpunar, Electrochim. Acta 127, 95 (2014).

    Article  CAS  Google Scholar 

  14. A. S. Lozhkomoev and E. A. Glazkova, Nanotecnology 27, 205603 (2016).

    Article  CAS  Google Scholar 

  15. S. Kanehira, S. Kanamori, K. Nagashima, et al., J. Asian Ceram. Soc. 1, 296 (2013).

    Article  Google Scholar 

  16. B. C. Bunker, G. C. Nelson, K. R. Zavadil, et al., J. Phys. Chem. B 18, 4705 (2002).

    Article  Google Scholar 

  17. E. I. Shkolnikov, N. S. Shaitura, and M. S. Vlaskin, J. Supercrit. Fluids 73, 10 (2013).

    Article  CAS  Google Scholar 

  18. P. A. Rebinder and E. D. Shchukin, Sov. Phys. Usp. 15, 533 (1972).

    Article  Google Scholar 

  19. J. Zang, M. Klasky, and B. C. Letellier, J. Nucl. Mater. 384, 175 (2009).

    Article  Google Scholar 

  20. W. H. Song, J. J. Du, Y. L. Xu, et al., J. Nucl. Mater. 246, 139 (1997).

    Article  CAS  Google Scholar 

  21. I. L. Khodakovskii, L. V. Katorcha, and N. S. Kuyunko, Geokhimiya, No. 11, 1606 (1980).

  22. X. Feng, Z. Baojie, and L. Chery, J. Environ. Sci. 20, 907 (2008).

    Article  Google Scholar 

  23. M. D. Luque de Castro and F. Priego-Capete, Ultrason. Sonochem. 14, 717 (2007).

    Article  CAS  Google Scholar 

  24. V. S. Nalajala and V. S. Moholkar, Ultrason. Sonochem. 18, 345 (2011).

    Article  CAS  Google Scholar 

  25. M. A. Margulis, Ultrasonics 23, 157 (1985).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Jiangsu Province High-level Innovation and Entrepreneurship Talents Introduction Plan (no. Jiangsu Talent Office [2016] no. 32); Changzhou Talent Plan (no. Changzhou Science and Technology Bureau [2016] no. 233).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liandi Li or Meysam Najafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liandi Li, Meysam Najafi Investigation of Potential of Oxygen Reduction Reaction at Aluminum Doped Carbon Nanocage (Al-C72) as a Catalyst. Russ. J. Phys. Chem. B 14, 40–44 (2020). https://doi.org/10.1134/S1990793120010248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120010248

Keywords:

Navigation