Adsorption of Tetranitrocarbazole on the Surface of Six Carbon-Based Nanostructures: A Density Functional Theory Investigation

Abstract

In this study, the interaction of Tetranitrocarbazole (TNC) with six various carbon-based nanostructures including carbon nanotubes, graphene, carbon nanocones and three fullerenes (C20, C24 and C60) was investigated by Density functional theory (DFT). The calculated adsorption energies, Gibbs free energy changes, enthalpy variations and thermodynamic equilibrium constants revealed that the adsorption of TNC is exothermic process, spontaneous, one-sided, non-equilibrium and experimentally feasible on the surface of all of the studied nano-adsorbents except carbon nanotube. The increasing of N–O and C–NO2 bond lengths after reacting with nano-substituents proved that the energetic and explosive properties of TNC has defused significantly. The computed density values substantiated the detonation pressure and explosive velocity of TNC have improved after adsorbing on the surface of C20.Some frontier molecular orbital parameters such as band gap, chemical hardness, electrophilicity, chemical potential and charge capacity were also studied and the results showed that C20 is an ideal candidate for being used as a sensing material in the construction of TNC conductometric sensor. Graphenecould also be utilized as an electroactive sensing material in the development of TNC selective potentiometric electrodes.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    J. Zhang, C. X. Guo, F. Hu, L. Yu, and C. M. Li, Anal. Chim. Acta 683, 187 (2011).

    Article  Google Scholar 

  2. 2

    S. J. Toal and W. C. Trogler, J. Mater. Chem. 16, 2871 (2006).

    CAS  Article  Google Scholar 

  3. 3

    R. C. Stringer, S. Gangopadhyay, and S. A. Grant, Anal. Chem. 82, 4015 (2010).

    CAS  Article  Google Scholar 

  4. 4

    J. D. Rodgers and N. J. Bunce, Wat. Res. 35, 2101 (2001).

    CAS  Article  Google Scholar 

  5. 5

    E. Psillakis and N. Kalogerakis, J. Chromatogr., A 938, 113 (2001).

  6. 6

    E. Psillakis and N. Kalogerakis, J. Chromatogr., A 907, 211 (2001).

  7. 7

    V. Miliukiene and N. Cenas, Z. Naturforsch., C 63, 519 (2008).

  8. 8

    S. Letzel, Th. Goen, M. Bader, J. Angerer, and T. Kraus, Occup. Environ. Med. 60, 483 (2003).

    CAS  Article  Google Scholar 

  9. 9

    S. M. Pourmortazavi, M. Rahimi-Nasrabadi, H. Rai, Y. Jabbarzadeh, and A. Javidan, Centr. Eur. J. Energ. Mater. 14, 201 (2017).

    CAS  Article  Google Scholar 

  10. 10

    M. M. Zahedi, M. Rahimi-Nasrabadi, S. M. Pourmortazavi, G. R. Fallah Koohbijari, J. Shamsi, and M. Payravi, Microchim. Acta 179, 57 (2012).

    CAS  Article  Google Scholar 

  11. 11

    M. Rahimi-Nasrabadi, M. M. Zahedi, S. M. Pourmortazavi, R. Heydari, H. Rai, J. Jazayeri, and A. Javidan, Microchim. Acta 177, 145 (2012).

    CAS  Article  Google Scholar 

  12. 12

    R. Heydari, J. Appl. Chem. Res. 7, 21 (2013).

    Google Scholar 

  13. 13

    H. Farahani and M. Rahimi-Nasrabadi, Iran. J. Anal. Chem. 5, 17 (2018).

    CAS  Google Scholar 

  14. 14

    V. D. N. Bezzon, T. L. A. Montanheiro, B. R. C. de Menezes, R. G. Ribas, V. A. N. Righetti, K. F. Rodrigues, and G. P. Thim, Adv. Mater. Sci. Eng. 2019, 1 (2019).

    Article  Google Scholar 

  15. 15

    R. Ahmadi and M. R. Jalali Sarvestani, Phys. Chem. Res. 6, 639 (2018).

    CAS  Google Scholar 

  16. 16

    R. Rahimi, S. Kamalinahad, and M. Solimannejad, Mater. Res. Express 5, 035006 (2018).

    Article  Google Scholar 

  17. 17

    P. Fallahi, H. Jouypazadeh, and H. Farrokhpour, J. Mol. Liq. 260, 138 (2018).

    CAS  Article  Google Scholar 

  18. 18

    I. Ion, G. R. Ivan, R. M. Senin, S. M. Doncea, L. Capra, C. Modrogan, O. Oprea, G. Stinga, O. Orbulet, and A. C. Ion, Sep. Sci. Technol. 10, 1 (2019).

    Google Scholar 

  19. 19

    N. Osouleddini and S. F. Rastegar, J. Electron. Spectrosc. Relat. Phenom. 232, 105 (2019).

    CAS  Article  Google Scholar 

  20. 20

    Z. Shariatinia and M. A. Moghadam, J. Saudi Chem. Soc. 22, 786 (2018).

    CAS  Article  Google Scholar 

  21. 21

    H. Cui, X. Zhang, D. Chen, and J. Tang, Appl. Surf. Sci. 447, 594 (2018).

    CAS  Article  Google Scholar 

  22. 22

    S. A. Javarsineh, E. Vessally, A. Bekhradnia, A. Hosseinian, and S. Ahmadi, J. Cluster Sci. 29, 767 (2018).

    CAS  Article  Google Scholar 

  23. 23

    S. M. Aghaei, M. M. Monshi, I. Torres, S. M. J. Zeidi, and I. Calizo, Appl. Surf. Sci. 427, 326 (2018).

    Article  Google Scholar 

  24. 24

    S. Amaya-Roncancio, A. A. Garcia Blanco, D. H. Linares, and K. Sapag, Appl. Surf. Sci. 447, 254 (2018).

    CAS  Article  Google Scholar 

  25. 25

    X. Shi, M. Sarafbidabad, A. Z. Ibatova, R. Razavi, and M. Najafi, J. Cluster Sci. 30, 61 (2019).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Ahmadi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, R., Jalali Sarvestani, M.R. Adsorption of Tetranitrocarbazole on the Surface of Six Carbon-Based Nanostructures: A Density Functional Theory Investigation. Russ. J. Phys. Chem. B 14, 198–208 (2020). https://doi.org/10.1134/S1990793120010194

Download citation

Keywords:

  • Tetranitrocarbazole (TNC)
  • Density functional theory (DFT)
  • adsorption
  • carbon nanostructures
  • explosives