Skip to main content
Log in

Comparison of Methods for Determining Dead Times in Supercritical Fluid Chromatography

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract—The three most common methods for measuring chromatographic dead time in supercritical fluid chromatography are tested. It is shown that at low concentrations of a polar cosolvent in the mobile phase, the use of the simplest “system peak” method leads to highly inaccurate results. With an increase in the percentage of the cosolvent to 10–15%, this method can be used for a rough estimation of dead times, especially for nonpolar stationary phases. The use of nitrogen(I) oxide as a marker of the dead time of an unretained component, on the contrary, is well suited in the case of using pure carbon dioxide as a mobile phase. The static method, based on other principles, can theoretically yield very accurate values for dead time, but it requires knowledge of the velocity profile of the mobile phase along the path of the entire chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. Lesellier and S. West, J. Chromatogr., A 1382, 2 (2015).

  2. G. Guiochon and A. Tarafder, J. Chromatogr., A 1218, 1037 (2011).

  3. A. Rajendran, J. Chromatogr., A 1250, 227 (2012).

  4. T. L. Chester, J. Chromatogr., A 1037, 393 (2004).

  5. T. L. Chester, in Supercritical Fluid Chromatography, Ed. by C. Poole (Elsevier, Amsterdam, 2017).

    Google Scholar 

  6. S. H. Page, S. R. Sumtper, and M. L. Lee, J. Microcol. Sep. 4, 91 (1992).

  7. M. Roth, J. Microcol. Sep. 3, 173 (1991).

  8. M. Roth, J. Chromatogr., A 1037, 369 (2004).

  9. K. D. Bartle, A. A. Clifford, S. A. Jafar, J. P. Kithinji, and G. F. Shilstone, J. Chromatogr. 517, 459 (1990).

  10. C. A. Rimmer, C. R. Simmons, and J. G. Dorsey, J. Chromatogr., A 965, 219 (2002).

  11. http://www.chromatographyonline.com/column-dead-time-diagnostic-tool.

  12. P. Vajda and G. Guiochon, J. Chromatogr., A 1309, 96 (2013).

  13. F. Gritti, Y. Kzakevich, and G. Guiochon, J. Chromatogr., A 1161, 157 (2007).

  14. J. F. Parcher and M. I. Selim, Anal. Chem. 51, 2154 (1979).

    Article  CAS  Google Scholar 

  15. T. Nakahara, P. S. Chappelear, and R. Kobayashi, Ind. Eng Chem. Fundam. 16, 220 (1977).

    Article  CAS  Google Scholar 

  16. E. W. Lemmon, M. O. McLinden, and D. G. Friend, Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database No. 69, Ed. by P. J. Linstrom and W. G. Mallard (Natl. Inst. Standards Technol., Gaithersburg MD, USA, 2005).

    Google Scholar 

  17. H. G. Janssen, H. M. J. Snijders, J. A. Rijks, and C. A. Cramers, J. High Res. Chromatogr. 14, 438 (1991).

    Article  CAS  Google Scholar 

  18. F. Gritti, M. Martin, and G. Guiochon, J. Chromatogr., A 1070, 13 (2005).

Download references

Funding

The study was carried out as part of the state assignment no. 0088-2014-0003 of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, subject no. 45.3 in the field of basic scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Kostenko.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostenko, M.O., Pokrovskiy, O.I., Parenago, O.O. et al. Comparison of Methods for Determining Dead Times in Supercritical Fluid Chromatography. Russ. J. Phys. Chem. B 13, 1111–1116 (2019). https://doi.org/10.1134/S1990793119070145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119070145

Keywords:

Navigation