Skip to main content
Log in

Change in the Electronic Structure of Oxide Films on the Surface of a Titanium Coating in the Process of Interaction with Oxygen

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this work, the characteristic features of the morphology and electronic structure of the oxide layer of a titanium coating synthesized on the surface of highly oriented pyrolytic graphite are determined with high spatial resolution. It is found that interaction with oxygen leads to the formation of an oxide TiOx, where 1.75 < x < 2. A possibility for the synthesis of an oxide layer is shown for a specified value of the width of the band gap on the surface of a titanium coating by tailoring the duration and temperature of its annealing in oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H.-J. Freund, Top. Catal. 48, 137 (2008).

    Article  CAS  Google Scholar 

  2. H.-J. Freund, J. Am. Chem. Soc. 138, 8985 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. V. Ern and A. C. Switendick, Phys. Rev. 137, 1927 (1965).

    Article  CAS  Google Scholar 

  4. V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  5. D. Reyers-Coronado, G. R. Gattorno, M. E. E. Pesqueira, et al., Nanotecnology 19, 145605 (2008).

    Article  CAS  Google Scholar 

  6. H.-J. Guntherodt and R. Wiesendanger, Scanning Tunnelling Microscopy I. General Principles and Applications to Clean and Absorbate-Covered Surfaces (Springer, Berlin, 1994).

    Google Scholar 

  7. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982).

    Article  CAS  Google Scholar 

  8. E. Meyer, H. J. Hug, and R. Bennewitz, Scanning Probe Microscopy (Springer, Berlin, 2004).

    Book  Google Scholar 

  9. R. J. Hamers and Y. Wang, J. Chem. Rev. 96, 1261 (1996).

    Article  CAS  Google Scholar 

  10. R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. Lett. 56, 1972 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. B. Choudhary, M. Dey, and A. Choudhary, Int. Nano Lett. 3, 25 (2013).

    Article  CAS  Google Scholar 

  12. A. Naitabdi, L. K. Ono, and B. R. Cuenya, Appl. Phys. Lett. 89, 043101 (2006).

    Article  CAS  Google Scholar 

  13. R. F. Bartholomew and D. R. Frankl, Phys. Rev. 187, 828 (1969).

    Article  CAS  Google Scholar 

  14. M. Abbate, R. Potze, G. A. Sawatzky, et al., Solid State Commun. 94, 465 (1995).

    Article  CAS  Google Scholar 

  15. I. Leonov, A. N. Yaresko, V. N. Antonov, et al., J. Phys.: Condens. Matter 18, 10955 (2006).

    CAS  Google Scholar 

  16. A. K. Gatin, M. V. Grishin, A. A. Kirsankin, M. A. Kozhushner, V. S. Posvyanskii, V. A. Kharitonov, and B. R. Shub, Nanotechnol. Russ. 8, 627 (2013).

    Article  Google Scholar 

  17. T. Morikawa, R. Asahi, T. Ohwaki, et al., Jpn. J. Appl. Phys. 40, L561 (2001).

    Article  CAS  Google Scholar 

  18. J. B. Birks, Modern Dielectric Materials (Heywood, London, 1960).

    Google Scholar 

  19. T. Mashimo, R. Bagum, Y. Ogata, et al., Cryst. Growth Des. 17, 1460 (2017).

    Article  CAS  Google Scholar 

  20. J. P. W. Treacy, H. Hussain, X. Torrelles, et al., Phys. Rev. B 95, 075416 (2017).

    Article  Google Scholar 

  21. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, 2nd ed. (Butterworths, London, 1962).

    Google Scholar 

  22. S. Y. Chae, M. K. Park, S. K. Lee, et al., Chem. Mater. 15, 3326 (2003).

    Article  CAS  Google Scholar 

  23. G. Hass and A. P. Bradford, J. Opt. Soc. Am. 47, 125 (1957).

    Article  Google Scholar 

Download references

Funding

This work was performed within the state task no. 0082-2014-0011 “Nanochemistry” (AAAA-A17-117111600093-8) and was financially supported by the Russian Foundation for Basic Research (grant no. 18-33-00020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Sarvadii.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvadii, S.Y., Kharitonov, V.A., Dokhlikova, N.V. et al. Change in the Electronic Structure of Oxide Films on the Surface of a Titanium Coating in the Process of Interaction with Oxygen. Russ. J. Phys. Chem. B 13, 413–420 (2019). https://doi.org/10.1134/S1990793119030217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119030217

Keywords:

Navigation