Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Features of Diffusion of Lead Atoms Embedded into a Defective Cu(111) Surface

Abstract

The results of calculations of energy barriers to the vacancy-mediated diffusion of Pb atoms embedded into the Cu(111) surface layer using quantum chemical density-functional theory are described. It is shown that the rate-limiting step of the migration of lead atoms is the degradation of the long-lived Pb–vacancy complex, not vacancy diffusion, as was observed for various impurity atoms on the Cu(100) face. The calculated energy barriers to the formation and degradation of this complex are 0.51 and 0.83 eV, respectively, while the barrier to monovacancy diffusion is 0.55 eV. The possibility of accelerating the diffusion of impurity Pb atoms at a high vacancy concentration owing to collisions of the Pb–vacancy complex with another vacancy is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    P. A. Thiel, M. Shen, Da-Jiang Liu, and J. W. Evans, J. Phys. Chem. 113, 5947 (2009).

  2. 2

    T. Flores, S. Junghans, and M. Wutting, Surf. Sci. 371, 14 (1997).

  3. 3

    A. K. Schmid, J. C. Hamilton, N. C. Bartelt, et al., Phys. Rev. Lett. 77, 2977 (1996).

  4. 4

    R. van Gastel, E. Somfai, W. van Saarloos, et al., Nature (London, U.K.) 408, 665 (2000).

  5. 5

    R. van Gastel, E. Somfai, S. B. van Albada, et al., Phys. Rev. Lett. 86, 1562 (2001).

  6. 6

    R. van Gastel, R. van Moere, H. J. W. Zandvliet, et al., Surf. Sci. 605, 1956 (2011).

  7. 7

    M. L. Grant, B. S. Swartzentruber, N. C. Bartelt, et al., Phys. Rev. Lett. 86, 4588 (2001).

  8. 8

    M. L. Anderson, N. C. Bartelt, and B. S. Swartzentruber, Surf. Sci. 538, 53 (2003).

  9. 9

    M. L. Anderson, M. J. D’Amato, P. J. Feibelman, et al., Phys. Rev. Lett. 90, 126102 (2003).

  10. 10

    P. Stoltze, J. Phys.: Condens. Matter 6, 9495 (1994).

  11. 11

    M. Karimi, N. Nomkowski, G. Vilali, et al., Phys. Rev. B 52, 5364 (1995).

  12. 12

    E. Kackell, F. Beechstedt, and G. Kresse, Phys. Rev. B 61, 4576 (2000).

  13. 13

    G. Colizzi, G. Biddau, and V. Fiorentini, Phys. Rev. B 79, 165441 (2009).

  14. 14

    S. Mirabella, D. De Salvador, E. Napolitani, et al., J. Appl. Phys. 113, 031101 (2013).

  15. 15

    A. L. Claire, J. Nucl. Mater. 69, 70 (1978).

  16. 16

    A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 11, 538 (2017).

  17. 17

    A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 7, 568 (2013).

  18. 18

    A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 8, 420 (2014).

  19. 19

    www.openmx-square.org.

  20. 20

    N. E. B. Cowern, K. T. F. Janssen, G. F. A. van de Walle, et al., Phys. Rev. Lett. 65, 2434 (1990).

  21. 21

    N. E. B. Cowern, G. F. A. van de Walle, D. J. Gravesteijn, et al., Phys. Rev. Lett. 67, 212 (1991).

  22. 22

    V. I. Tokar, https://arhiv.org/abs/1806.08394.

Download references

FUNDING

This work was performed under a state task of the Russian Federation (task no. 45.9, 0082-2014-0011, AAAA-A17-117111600093-8) and supported by the Russian Foundation for Basic Research (project nos. 16-29-05119 and 17-03-00275).

Author information

Correspondence to A. S. Prostnev.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prostnev, A.S., Shub, B.R. Features of Diffusion of Lead Atoms Embedded into a Defective Cu(111) Surface. Russ. J. Phys. Chem. B 13, 543–547 (2019). https://doi.org/10.1134/S1990793119030102

Download citation

Keywords:

  • surface diffusion
  • diffusion coefficient
  • impurity atom
  • vacancy
  • density functional theory